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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Robustness is a key factor contributing to a high functionality of technical systems under uncertainty. In this context, existing methodologies,
such as Axiomatic Design and Quality Function Deployment, can help to identify coupled functional requirements which significantly affect
the robustness of a system. However, it is often not possible to decouple all in the final product design. As a consequence, multiple interrelated
tolerance chains have to be considered in the subsequent tolerance design leading to multi-constrained or multi-objective optimization problems.
Despite their significant influence on the optimization process and its results, interrelated tolerance chains have not been studied in detail yet,
especially in the context of sampling-based tolerance-cost optimization. Moreover, a holistic framework for the tolerance-cost optimization of
systems with multiple key characteristics is missing so far. In order to close that gap, this paper presents a framework to consider multiple
key characteristics in both least-cost and best-quality tolerance-cost optimization using sampling techniques for tolerance analysis. Therefore,
interrelated tolerance chains and their effects on the optimization process in terms of the definition and handling of multiple constraints and
objectives are discussed in detail. The proposed research aims to bring all important aspects together in one common framework. Thus, it is
supposed to help researchers and practitioners to properly define and solve the tolerance optimization problem. In order to show its benefits and
applicability, it is applied to an illustrative case study. The novelty of this paper is to present a comprehensive method to support the tolerance
engineer in creating a robust and optimal tolerance design of products with multiple interrelated key characteristics.
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1. Introduction and Motivation

Geometric variations are inevitable [1] and thus have to be
limited by tolerances to assure the functionality [2, 3] and the
perceived quality of a product [4] over the entire product-life
cycle [2]. However, tolerance allocation can become a complex
and challenging task [5]: While loose tolerances enable cost-
efficient manufacturing but lower the product quality, tight tol-
erances may lead to high-quality products but consequence in-
creased costs [6, 7]. In order to solve this conflict, optimization-
based tolerance allocation, i.e. tolerance-cost optimization, is
well established [8]. Mainly due to its constantly increasing
capability and performance, tolerance-cost optimization can
nowadays be used to optimize complex products with numer-
ous sub-assemblies and parts [8, 9].
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However, increasing product complexity can lead to mul-
tiple, conflicting key characteristics [10, 11]. Despite the ap-
plication of existing methods to initially decouple the key
characteristics, interrelated tolerance chains cannot be totally
avoided [11] and have to be adequately considered in the subse-
quent tolerance optimization process [8]. This implies a proper
handling of multi-constrained and multi-objective optimiza-
tion problems which have not fully been studied for sampling-
based tolerance-cost optimization techniques yet. With the aim
to overcome this drawback, the following article presents a
novel framework which is used to help the user in the def-
inition of both least-cost and best-quality tolerance-cost opti-
mization of products with interrelated key characteristics. After
discussing the current state of the art and related work in sec-
tion 2, the proper consideration of interrelated tolerance chains
in tolerance-cost optimization is discussed and integrated in one
common framework in section 3. Its exemplary application in
section 4 shows its applicability and benefits. Finally, a conclu-
sion and an outlook are given in section 5.
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Nomenclature

C(sum) (Cumulated) Manufacturing costs
(F)KC,Y (Functional) Key characteristic
g Indicator function
I Total number of tolerances
J Total number of process alternatives
k Single FKC
K Total number of FKCs
LHS Latin Hypercube Sampling
LSL,USL Lower, upper specification limit
MO Multi-objective
n Sample size
SO Single-objective
t Tolerance
xi j Machine selection parameter
X Dimension
zmax, ẑ Maximum scrap rate, estimated scrap rate
� Probability density function

2. Literature review

Tolerance allocation plays an important role in the prod-
uct development process to ensure the fulfillment of specified
quality requirements which are influenced by unavoidable geo-
metric part variations [1, 2]. Therefore, previous drawings, ex-
pert appraisals and experimental data mostly serve as a basis
to select the tolerance values for the current design. The us-
age of manual, iterative approaches such as tolerance analy-
sis methods in combination with sensitivity analysis, is com-
mon to check and assign the tolerance values on a trial-and-
error basis [5]. However, these unsystematic approaches lead
to non-optimal tolerance designs since the cost aspect is only
indirectly considered by qualitative thumb rules [5, 12]. In
contrast, tolerance-cost optimization overcomes this drawback
by using optimization algorithms to solve the tolerance-cost
problem taking both quantitative cost and quality information
into account [8]. Since its beginnings in the mid 20th cen-
tury, the method has continuously been enhanced over the last
decades [8]. As a result, tolerance-cost optimization can suc-
cessfully be used to:

• optimize complex, time-variant technical systems under
uncertainties and environmental influences, e.g. forces or
temperature [13, 14, 15],
• identify the global optimum for a wide range of

tolerance-cost models [8, 16],
• select cost-efficient process and machine alternatives [6,

17],
• consider the quality loss for the customer [8, 15, 18],
• concurrently optimize design and manufacturing toler-

ances [8, 19] and
• simultaneously take both design parameters and toler-

ances into account [15, 20]

while statistically ensuring the fulfillment of the product re-
quirements taking both dimensional and geometrical tolerances
into account [8, 9, 21].

Therefore, the product requirements have to be broken down
to assembly and part level and have to be described by the so-
called key characteristics (KCs) [22]. Hence, a KC represents
an important attribute which significantly influences a product
requirement, such as cost, performance, functionality or safety,
when the KC varies from its nominal [22]. In the context of
tolerance design, geometrical KCs are mainly defined to ensure
the functionality of a product and thus are also called functional
key characteristics (FKC) [9, 10]. In order to comply with the
product requirements, multiple KCs are required for even rela-
tively simple products [22, 23]. Depending on their correlation,
they are independent from each other or interrelated [8, 11, 24].
As it is exemplarily shown in Fig. 1, Y1 and Y2 or Y2 and Y3
are coupled by one common element X2b or X3b. Thus they are
called interrelated or connected and can conflict [10, 23, 24]. In
contrast, Y1 and Y3 are independent from each other.

In order to achieve a robust design, there are numerous
approaches fostering the intended solution of the KC con-
flicts [25]. Depending on the degree of abstraction in the respec-
tive stages of the product development process, they support
their early detection and, if possible, their decoupling. Thus, at
the beginning of product development, Quality Function De-
ployment [26] and Axiomatic design [27] can be used to iden-
tify interactions between requirements leading to interrelated
KCs in the subsequent development stages. Moreover, a com-
prehensive un- and decoupling can be achieved during the prod-
uct design, e.g. by modifying the concept of a system [28],
changing the assembly sequence [11], using fixtures [25] or ap-
plying tolerance compensation methods [29, 30].
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Y3

X2a
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X3a

X5

X4
Y1 = X2b – X1
Y2 = X3b – (2 X2a + X2b)
Y3 = X4 – (2 X3a + X3b + X5)

Fig. 1. Independent and interrelated KCs in comparison based on [17].

However, despite the rigorous application of these methods
in the product development process, it is not always possible to
avoid interrelated KCs in a final design [31]. Thus, they have
consequently to be considered in tolerance-cost optimization.
The effects of connected KCs in tolerance-cost optimization us-
ing worst-case or statistical tolerance analysis approaches, have
been studied in detail yet, especially the proper formulation of
multi-constrained optimization problems with the help of La-
grange-multipliers [8]. In contrast, they have not thoroughly
been discussed in context of sampling-based tolerance-cost op-
timization, especially in best-quality tolerance-cost optimiza-
tion. In addition, a framework to enhance the usability of both
least-cost and best-quality tolerance-cost optimization is miss-
ing so far.

2
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3. Tolerance-cost optimization of systems with interrelated
key characteristics

After briefly discussing the fundamentals of tolerance-cost
optimization in section 3.1, the effects of interrelated KCs are
studied in section 3.2

3.1. Background

The global aim of tolerance-cost optimization is to identify
an optimal combination of tolerance values t = [ti, . . . , tI]T

within their predefined limits ti ∈ [ti,min, ti,max]. In general,
tolerance-cost optimization can either be cost-driven or quality-
driven to realize a least-cost or a best-quality tolerance design.
The goal of least-cost tolerance optimization is to minimize the
cumulated manufacturing costs Csum(= objective) while meet-
ing specified quality requirements (= constraint) [13]. In con-
trast, best-quality tolerance optimization tries to maximize the
quality of a design e.g. by minimizing the scrap rate ẑ (= ob-
jective) without exceeding a maximum cost limit Cmax (= con-
straint). Both optimization problems are mathematically de-
fined as it follows: [8, 13]

Least-cost Best-quality

Minimize Csum(t), ẑ(t),

subject to : ẑ(t) ≤ zmax. Csum(t) ≤ Cmax.

(1)

Thus, the objective and the constraint are reversed depending
on the chosen optimization goal (see Eq. (1)).

Initially, the potential of tolerance-cost optimization was
limited by the existing computer technology and the restrictions
of discrete optimization algorithms. Rising computing powers
and the emergence of stochastic algorithms enhanced it to a
powerful method solving a wide range of complex optimization
problems (see section 2). Due to their problem-independent,
user-friendly applicability, single- and multi-objective stochas-
tic optimization algorithms, e.g. Simulated Annealing [19], Par-
ticle Swarm Optimization [10, 13], Genetic Algorithm (GA) [9,
21], Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [32] or Differential Evolution [32] are mainly used for
tolerance-cost optimization today. The general workflow of
tolerance-cost optimization is shown in Fig. 2. Starting with a
set of initial tolerances, the optimization algorithm iteratively
tries to adjust each tolerance ti until a predefined termination
criterion is met. Hence, the optimizer uses the information of
previous iterations to select the current tolerances in each itera-
tion for the subsequent tolerance and cost analysis. [9] Among
worst-case and statistical tolerance analysis approaches, sam-
pling techniques such as Monte Carlo Simulation or Latin Hy-
percube Sampling (LHS) are frequently used in sampling-based
tolerance-cost optimization to analyze the variations of the KCs
as a function of the varying inputs [3, 7, 9]. The resulting prob-
ability distribution serves as a basis to evaluate the effect of
the currently selected tolerances on the functionality of the sys-
tem by a suitable quality criterion, e.g. the scrap rate or non-

conformity rate ẑk predicted by appropriate estimation tech-
niques [9, 33]:

ẑ(t) = 1 −
∫ US L

LS L
�(Y(t)) dx. (2)

In addition, the costs for the current solution are analyzed us-
ing a tolerance-cost model to get the link between the currently
allocated tolerances and the resulting manufacturing costs [9].
Therefore, experimental cost data serve as a basis to create the
tolerance-cost relationships for each tolerance ti [8] . The man-
ufacturing costs Csum for the total tolerance design are calcu-
lated as the sum of the individual manufacturing costs Ci j for a
chosen process or machine alternative j [8]:

Csum(t) =
I∑

i=1

J∑
j=1

xi j ·Ci j, ∀ i = 1, . . . , I,

xi j ∈ {0; 1}, ∀ j = 1, . . . , J.

(3)

This step is repeated until a balance between costs and qual-
ity is achieved and either a quality- or cost-optimal design is
reached (see Fig. 2). However, Eq. (1-2) are limited to prod-
ucts with only one FKC. The effects of multiple FKCs on the
optimization process with its constraint(s) and objective(s) are
discussed in the following.

Optimal tolerances

yes

Tolerance analysis

Termination 
criterion met?

Costs

Cost analysis

Quality

Initial tolerances

Current tolerances

no

Optimization algorithm

Fig. 2. Basic workflow of tolerance-cost optimization [9].

3.2. Interrelated FKCs in sampling-based tolerance-cost opti-
mization

If the quality of a product is evaluated by measuring a sin-
gle FKC, its total scrap rate ẑtot is equal to the scrap rate ẑk.
When using sampling techniques in combination with an em-
pirical scrap rate estimation technique ẑk=1 can be calculated as
the ratio of the sum of defect parts to the total number n [9]:

3
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ẑk = 1 −
∑n

i=1 gk(Yi)
n

, (4)

with : gk(Yi) =



0 if Yi < LSLk,

1 if LSLk ≤ Yi ≤ USLk,

0 if Yi > USLk.

(5)

For products with multiple, interrelated FKCs the function-
ality must be evaluated for each sample i and commonly con-
sidered by ẑtot:

ẑtot = 1 −
∑n

i=1
∏K

k gk(Yi,k)
n

. (6)

This approach corresponds to a logical disjunction of the de-
fects since the product is considered as non-functional when
already one of all FKC specifications is unreached. Other ap-
proaches consequently lead to over- and underestimations of
the product quality (see Fig. 3).

i

1 2 3 4 5 … n 

𝑌𝑌1      …  2
∨ ∨ ∨ ∨ ∨ … ∨

𝑌𝑌2      …  4

= = = = = … =

Product      …  5

k

Fig. 3. Empirical scrap rate estimation considering multiple FKCs:
� = non-conform,�= conform.

The number of defects of each individual FKC is lower than
the product scrap rate since they are only separately considered.
In addition, the calculation of ẑk as the sum of the individu-
ally measured K scrap rates ẑk leads to higher scrap rates (see
Fig. 3). Consequently, the scrap rate estimation for multiple
FKCs influences the definition and the results of both least-cost
and best-quality tolerance-cost optimization.

However, before starting with the optimization, the designer
should try his best to resolve any FKC conflict using the dif-
ferent methods highlighted in section 2 (see Fig. 4). After the
final design is defined, the inevitable interrelated FKCs have
to be considered in the tolerance-cost optimization. Thus, the
optimization goal (least-cost or best-quality) has initially to be
determined since it mostly affects the definition of the optimiza-
tion problem (see Eq. (1)).

3.2.1. Least-cost tolerance-cost optimization
Aiming to achieve a least-cost design, the optimization prob-

lem is defined as a single-objective (SO) problem, regardless
of the number of FKCs (see Eq. (1)). In contrast, multiple
FKCs and their interrelation influence the handling of the con-
straint(s). If the tolerance analysis is based on worst-case or
statistical approaches, e.g using the root sum square or the es-
timated mean shift method, the fulfillment of the functional

requirements must be valued separately by K constraints [8].
Using sampling techniques, a decoupled quality assurance by
defining K inequality conditions for each scrap rate ẑk will lead
to lower minimum manufacturing cost. However the maximum
scrap rate for the whole product cannot be fulfilled (see sec-
tion 4.3). Consequently, all K interrelated FKCs have to be
commonly considered according to Eq. (6) which results in one
single inequality constraint (see Fig. 4). Hence, the designer
has to specify the maximum total scrap rate zmax and the max-
imum individual scrap rates zk,max. Any scrap rate zk,max which
is lower than the total scrap rate zmax has to be considered by
an additional inequality constraint to meet the stricter quality
requirements for the individual FKC (see Fig. 4).

3.2.2. Best-quality tolerance-cost optimization
In contrast, in best-quality tolerance-cost optimization the

objective(s) to be minimized are the resulting scrap rate(s) as a
function of the allocated tolerances (see Eq. (1)). By switch-
ing objective(s) and constraint(s), one constraint is sufficient
to comply with the manufacturing cost limit Cmax (see Fig. 1).
With the aim to get an optimal overall scrap rate ẑtot, this prob-
lem can be solved by an single-objective optimization (see
Fig. 4). However, the resulting scrap rates ẑk cannot directly
be controlled within the optimization process since they result
from the identified tolerances. If the solutions are not to be
restricted in advance, multi-objective (MO) optimization algo-
rithms can be applied to simultaneously minimize each of the
scrap rate ẑk and ẑtot. The result is a Pareto front, a selection
of non-dominated solutions [33, 35]. Its shape is influenced by
the cost model and the correlation of the FKCs. This set of so-
lutions can subsequently be used as a decision-making basis to
prioritize the FKCs by choosing a suitable solution. [23, 33, 34]
Hence, ẑtot should always be defined as an objective since oth-
erwise the total product quality cannot directly be optimized.
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ẑk = 1 −
∑n

i=1 gk(Yi)
n

, (4)

with : gk(Yi) =



0 if Yi < LSLk,

1 if LSLk ≤ Yi ≤ USLk,

0 if Yi > USLk.

(5)

For products with multiple, interrelated FKCs the function-
ality must be evaluated for each sample i and commonly con-
sidered by ẑtot:

ẑtot = 1 −
∑n

i=1
∏K

k gk(Yi,k)
n

. (6)

This approach corresponds to a logical disjunction of the de-
fects since the product is considered as non-functional when
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Fig. 3. Empirical scrap rate estimation considering multiple FKCs:
� = non-conform,�= conform.
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4. Application

To verify the claims of section 3.2, both quality- and least-
cost optimization are exemplarily applied to the knuckle joint
illustrated in Fig. 1.

4.1. Presentation of the case study

Ensuring the functionality of the knuckle joint, three inter-
related FKCs are taken into account (see Fig. 1). For least-cost
optimization a maximum scrap rate zmax = zk,max = 2 700 ppm
(=̂ ± 3σ [36]) must be fulfilled for the whole product and all
FKCs. All tolerances are normally distributed with a standard
deviation si = ti/6. The cost model, process limits, nomi-
nal dimensions and specification limits are consistent to [17].
The maximum limit of the manufacturing costs for best-quality
tolerance-optimization is set to Cmax = 350 $.

4.2. Application of the proposed method

In order to ensure the comparability of the results, the
same LHS is used for all studies and a sample size of
n = 100 000 was chosen as a compromise between computa-
tion time and quality of result (see [9]). The optimization is
done in MATLAB R©R2019a using a GA for single-objective and
a NSGA-II for multi-objective optimization [35]. The popula-
tion size was set to 200 (GA, NSGA-II), the total number of
generations to 500 (GA) and 1000 (NSGA-II). An average rel-
ative change of 1e-6 in the best fitness function value over 250
generations was defined as termination criterion considering the
scrap rates with an accuracy of one ppm for GA and NSGA-II.
The default values were used for all other settings.

4.3. Discussion of the results

As it was claimed in section 3.2, the consideration of mul-
tiple FKCs influences the tolerance-cost optimization in terms
of the resulting product quality and cost. Firstly, the effects of
scrap rate estimation in least-cost tolerance optimization are
discussed for the given case study. Thus, the product quality
measured via the scrap rate(s) is considered by

a) one constraint: ẑtot ≤ zmax,

a*) K constraints: ẑk ≤ zk,max ∀ k = 1, 2, 3 .
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Fig. 5. Comparison of optimization results for least-cost optimization.

Fig. 5 compares the results for case a) and a*) for a five times
repetition of the optimization based on the same LHS. Focusing

on the objective, it can be seen that the decoupling of the FKCs
for case a*) leads to lower minimum manufacturing costs than
for case a) (see Fig. 5, left). The single scrap rates ẑk for case a)
are all coherently lower than for case a*) caused by the tighter
tolerances (see Fig. 5, center). This further illustrates that Eq. 6
is a more restrictive criterion since it ensures total product qual-
ity for all FKCs. By an independent consideration of the FKCs,
the total product quality cannot be guaranteed since it exceeds
the maximum limit zmax (see Fig. 5, right). Therefore, the au-
thors recommend case a) instead of case a*) to ensure overall
product functionality (see Fig. 4).

Secondly, the effects of interrelated tolerance chains on
the results of best-quality tolerance optimization are subse-
quently discussed. Depending on the number of objectives, the
product quality can be optimized by: (see Fig.4, right)

b) one objective: ẑtot,

c) K+1 objectives: ẑk, ẑtot ∀ k = 1, 2, 3.
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Fig. 6. Comparison of optimization results for best-quality optimization.

In accordance to Fig. 5, the optima for ztot are considerably
higher than the single scrap rates ẑk (Fig. 6, left) for case b). In
contrast to case b), ẑtot and ẑk are simultaneously optimized for
case c) using the multi-objective optimizer NSGA-II to identify
a set of optimal solutions. In Fig. 6 the best solutions are ex-
emplarily shown for one optimization run. The estimated total
scrap rate ẑtot is visualized by the color of each marker. De-
pending on the number of the FKCs and their correlation, there
are multiple solutions for comparable total scrap rates ẑtot as a
combination of the individual scrap rates ẑk. This set of solu-
tions serves as a basis to select one configuration by prioritiz-
ing the objectives after the optimization. However, ẑtot cannot
be controlled directly if it is not defined as an objective.

5. Conclusion and Outlook

Although existing design methods can help to detect and de-
couple interrelated, conflicting key characteristics of complex
products, they cannot be totally eliminated in the final design.
Hence, this influences the subsequent tolerance-cost optimiza-
tion process to create a balance between the resulting manu-
facturing costs and product quality. With the aim to support
the user in properly defining and implementing sampling-based
tolerance-cost optimization of products with interrelated key
characteristics, all relevant aspects were combined in a common
framework for both least-cost and best-quality tolerance-cost
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optimization and can serve as a guideline for both researchers
and practitioners. Its exemplary application further emphasizes
the importance of a proper application of scrap rate estimation
in the tolerance-cost optimization process. Since the assembly
sequence significantly influences the correlation of the different
key characteristics, this potential should be further studied in
the context of tolerance-cost optimization.
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