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ABSTRACT 
Current trends in product development are digital engineering, the increasing use of assistance tools 
based on artificial intelligence and in general shorter product lifecycles. These trends and new tools 
strongly rely on available data and will irreversibly change established product development processes. 
One example for such a new data driven tool is the plausibility check of linear finite element simulations 
with Convolutional Neural Networks (CNN). This tool is capable of determining whether new 
simulation results are plausible or non-plausible according to numeric input data. The digitalization and 
the increased use of data driven tools employing algorithms known from Artificial Intelligence also 
shifts the roles of many involved engineers. This paper describes and highlights this transition from 
current product development processes to a data driven / simulation driven product development 
process. Particularly, the shifts and changes of different roles and domains are illustrated and an example 
for changing roles in the design and simulation department is described. Furthermore, required 
adjustments in the design process are derived and compared to the current status. 
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1 INTRODUCTION 

Current trends in product development, such as digitalization, digital twins, shorter product lifecycles, 

and digital engineering (Trage et al., 2018), imply a radical change of established product development 

processes and engineering workflows. In this regard, for example assistance systems for the knowledge-

based setup and plausibility check of finite-element-simulations (Kestel et al., 2016 and Spruegel et al., 

2018) strongly re-shape the established simulation and design verification processes. The application of 

such new data-driven design tools will transform the product development process as we know it today 

to a digital engineering process. This also means that the roles of many involved engineers will change in 

the future.  

The current paper systematically highlights this transformation exemplarily for the finite-element 

simulation process and carves out important shifts and changes of different roles and domains in the 

design and simulation department. Furthermore, required adjustments in the design process are derived 

and compared to the current status.  

The paper is structured as follows. First, a typical current product development process is highlighted. 

After that, the current state of the art in Data Mining and data-driven methods for knowledge-based 

simulation is presented. Afterwards, a future product development process and the transition of 

different domains and the involved people is described. Finally, a conclusion and an outlook are given.  

2 A TYPICAL CURRENT PRODUCT DEVELOPMENT AND TESTING 

PROCESS 

The characteristics of new products must be predicted as accurate as possible before the delivery to the 

customer. Otherwise the probability of complaints and damages rises. The most common ways to 

evaluate new products are simulation and technical testing. In general, a distinction can be made between 

customer testing and self-testing. Usually customer testing is used for single-piece production e.g. big 

machines or large-sized gears whereas self-testing is applied for series and small series production. This 

typical sequence for self-testing is shown in Figure 1. (Ehrlenspiel and Meerkamm, 2013) 

  

Figure 1: General procedure of product creation with self-testing acc. to  
(Ehrlenspiel and Meerkamm, 2013) 

In general, the process of developing new parts needs various iterations to be completed successfully. 

This is shown in the flowchart of Figure 1 through the three different iterations Model, Prototype and 

(Small-) Series. In this example, the start of the whole process is the market or marketing which provides 

the need or idea for a new design task. After that step, the design and development department generate 

the first concepts, which are then checked by simulation. The next actions are the production and 

technical testing of the model. Once these tasks have been completed, the Prototype-phase can be 

initiated. The involved departments and steps are the same as in the first run, but the result is a functional 

prototype of the new product. The acquired knowledge is used to complete the last stage, the (Small-) 

Series. The outcome of this iteration is the final product ready for series production. 
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3 OVERVIEW OF THE CRISP-DM PROCESS AND DATA MINING METHODS 

This section firstly introduces the reader to a standard process for the application of data mining to 

various use and business cases and describes established data mining methods. After this, a brief 

introduction to assistance and support systems for knowledge-based simulation is given.  

3.1 CRISP-DM process 

A standardized process for the application of Data Mining is the “Cross Industry Standard Process for 

Data Mining” (CRISP-DM). This process was developed in 1996 and supported by an EU project 

(funded under FP4-ESPRIT 4, Grant agreement ID: 25959). Participants in this research project included 

Daimler-Benz, ISL (now SPSS) and IBM. The result of this research project was the development of a 

proven method to guide Data Mining tasks. (Chapman et al., 1999) and (Wirth and Hipp, 2000) 

CRISP-DM includes a methodology and a process model for Data Mining problems. The methodology 

describes the typical phases of a project and the work to be carried out in them. The process model in 

Figure 2 provides an overview of the Data Mining cycle, which comprises six phases. 

 

Figure 2: The CRISP-DM process cycle acc. to (Chapman et al., 1999), (IBM Corp, 2012) 
and (Wirth and Hipp, 2000) 

The dependencies between the different phases are represented by arrows. The sequence of the phases 

is not predefined, but varies according to the project task. The outer circle symbolizes the general 

cycle of Data Mining: Once a solution has been identified, the knowledge gained during the process or 

the new information gained from the specific results can be used to find further questions for the 

original problem.  

In general, the CRISP-DM model is very flexible and applicable to many problems. For further 

information about the different phases, more detailed explanations and precise formulations of the 

tasks, please refer to the sources (Chapman et al., 1999) and (IBM Corp, 2012). 

3.2 Data Mining methods 

The determination of the Data Mining method is strongly dependent on the objective of the 

application. Therefore, Data Mining methods can be divided into various types of analyses, which all 

provide different types of results, e.g. number values, assigned classes or groups (Vajna et al., 2018). 

A selection of process classes and their objectives is shown in Table 1. The classification and 

regression method are explained in more detail since they are used in the following methods.  

Table 1: Data Mining methods acc. to (Cleve and Laemmel, 2016) and (Runkler, 2010) 

Data Mining methods 

Method Objective 

Regression Identification of relationships between variables 

Classification Assignment of objects to predefined classes 

Anomaly Detection Identification of unusual or erroneous data 

Association rule learning Identification of dependencies in the form of rules 

Clustering Grouping of objects into a predefined number of clusters 

Summarization Providing different, compact representation of the data 
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3.2.1 Classification 

The aim of classification is to assign data to previously defined classes. The classification problem is 

related to cluster analysis. However, the aim of cluster analysis is to combine values into a predefined 

number of groups or classes. These classes already exist in the classification, but the objects must be 

assigned according to their properties. (Runkler, 2010), (Tan et al., 2006), (Han et al., 2012) and 

(Aggarwal, 2015)  

According to (Runkler, 2010) different examples of classification methods are: 

Artificial Neural Networks, k-nearest neighbor classifiers, decision trees, rule-based classifiers, 

Support Vector Machines or Naïve Bayes classifiers. 

3.2.2 Regression 

The regression analysis determines the functional dependencies between characteristics in order to 

derive correlations from the data. Therefore, it is often used for numerical prediction, for example to 

improve product quality by selectively controlling individual production parameters. The necessary 

values can be determined by regression in order to achieve the desired quality. Different methods of 

regression are: 

Linear regression (Larose, 2006), multiple linear regression (Larose, 2006), robust regression (Wolf 

and Hennig, 2010), nonlinear regression (Runkler, 2010), multilayer perceptron (Cleve and Laemmel, 

2016) or Radial Basis Function networks (Runkler, 2010). 

4 ASSISTANCE SYSTEMS FOR SUPPORTING STATIC MECHANIC FINITE-

ELEMENT SIMULATIONS 

The setup and interpretation of finite-element simulations for static mechanic problems is both a 

challenging and responsible task. This is because such simulations require detailed knowledge of 

various setup options in commercial FE-tools and their implications on the obtained results. Moreover, 

careful attention should be paid to the result interpretation, since implausible simulation results may 

lead to wrong design decisions. Motivated by these issues, different approaches have been developed 

for supporting the pre-processing procedure as well as for the plausibility check of static mechanic FE 

simulations, which are briefly described in the following sections 4.1 and 4.2.   

4.1 Supporting the pre-processing procedure 

The concept of (Kestel and Wartzack, 2015) applies the two above-mentioned Data Mining methods. 

This procedure uses a knowledge acquisition component and a corresponding knowledge database to 

access and save the provided simulation data. Furthermore, this knowledge databases contains design 

and simulation rules and methods, to be able to create design-accompanying simulations. This tool is 

implemented in the CAD-environment to ensure easy operation by design engineers.  

 

Figure 3: Example of knowledge supported generation of simulations acc. to  
(Kestel and Wartzack, 2015) and (Kestel and Wartzack, 2016) 
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Figure 3 shows the application of this tool with the example of an angle bracket. According to the 

simulation objective, a fitting simulation model is determined by classification. In Figure 3, two 

possible simulation models are shown. The first one is a simplified model with shell elements, which 

is used to determine deflection or contact forces. For the analysis of the force profile in the 

component, the second model should be applied, which uses volume elements to fulfil the defined 

tasks. This procedure can be carried out in even more detail so that e.g. contact settings, element 

settings and element types are automatically determined for the simulation. For this type of prediction, 

regression, classification and neural networks must be used. More information about this method can 

be found in (Kestel et al., 2016), (Kestel and Wartzack, 2015) and (Kestel and Wartzack, 2016).  

4.2 Plausibility checks for structural mechanic FE simulations with Deep Learning 

During the last years, a methodology for plausibility checks of linear structural mechanic finite element 

simulations has been developed. This approach is able to transfer arbitrary geometry data to machine 

learning algorithms, such as Artificial Neural Networks. The methodology uses spherical detector 

surfaces to transform any FE mesh of a simulation to a matrix of fixed size with numerical values. As all 

necessary information in finite element simulations is node bound, also the boundary conditions and the 

result files can be transformed into numerical matrices of the same size with the new methodology. 

Figure 4 shows the different sub steps of the methodology that are explained in the following sections. 

4.2.1 Spherical detector surface, Node projection, and Node matrix 

The start of each investigation is a performed FE simulation with the underlying FE mesh, the known 

boundary conditions and the result variables. At first, a spherical detector surface is built around the 

FE mesh. A good number of pixels on the surface is 100x100 pixels, which results in 10,000 pixels of 

the same surface area. As parts can be oriented differently in 3D space, a uniform orientation on basis 

of principal component analysis must be performed to the point cloud. The center of the sphere is the 

same as the center of gravity of the point cloud of the rotated FE mesh. 

In the second step, each point of the FE mesh is projected onto the surface of the detector sphere. The 

center of projection is always the center of gravity of the point cloud and the center of the sphere 

(which are the same). In each pixel, the number of projected nodes is counted. 

Just as the surface of the earth can be projected onto a 2D map, the surface of the detector sphere can 

be converted into a 2D matrix. Each entry of the matrix corresponds to one pixel of the sphere. The 

numeric value in the matrix is the number of projected nodes to that specific pixel. At this point, the 

3D geometry was converted to a 2D representation of the underlying FE mesh. This matrix could now 

already be used to perform part recognition. This methodology and first result are published in 

(Spruegel and Wartzack, 2016). 

4.2.2 Matrices for boundary conditions and results from FE simulation 

All the information in finite element simulation correspond to certain nodes of the FE mesh. 

Consequently, this information can also be converted to matrices of fixed size. In Figure 4 the 

procedure is shown for the fixed displacement support in Y-direction (each node, which has 

predefined 0 displacement in Y-direction, is projected onto the surface), the force in Y-direction and 

the equivalent stress (the values of the equivalent stress from all corner nodes of each FE element are 

accumulated in the detector pixel). This procedure is then performed for all the other inputs and 

outputs of the simulation (fixed rotations, applied forces, applied moments, deformations, stresses, 

etc.). When all of these matrices are combined to one large matrix with numerical values, the DNA of 

an FE simulation can be obtained. The advantage is that the DNA represents the FE simulation and is 

a numerical matrix of fixed size even if very different parts are simulated with finite element analysis. 

4.2.3 Labelled data base 

If a database is built up with validated simulations, the corresponding DNA must be labelled with 

certain additional information. If the DNA should be used to train a CNN for plausibility checks, the 

already available DNAs of previous simulations must be labelled with ‘plausible’ or ‘non-plausible’. 

Of course, if the DNA will be used for different investigations, other labels must be attached (e.g. 

‘missing support in Y-direction’). 
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4.2.4 Automatic plausibility check with Deep Learning Convolutional Neural Networks 

 

Figure 4: Methodology for plausibility checks of arbitrary FE simulation data with spherical 
detector surfaces and CNN Deep Learning 

In the lower left corner of Figure 4, the whole process for the training and the application of CNN is 

shown. A detailed explanation can be found in (Spruegel et al., 2018). For the training and testing of 

the CNN many simulations and the corresponding DNAs are needed. Afterwards the CNN can be 

trained with different settings of the hyper-parameters (e.g. filter size, number of filters, number of 

convolution layers, max pooling options, number of fully connected layers, number of neurons in 

these layers etc.). The evaluation of the performance with data that was not used for the training 

process is needed to detect overfitting of the network. After the training of a CNN with high prediction 

quality, a new simulation can be evaluated (e.g. classified as ‘plausible’). This application process is 

shown in Figure 4 in the lower left corner with the outer circle for a new FE simulation. More detailed 

information about the methodology can be found in (Spruegel et al., 2018). Another example for the 

application of machine learning methods in FE simulations can be found in (Bohn et al., 2013) 
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5 COMPARISON OF PRODUCT DEVELOPMENT PROCESSES TODAY AND 

IN THE NEAR FUTURE 

With the introduction of virtual development tools in the product development process certain shifts 

and improvements have been made. The transition from the established process, presented in section 

2, to the virtual product development for the model- and prototype-phase is shown in Figure 5. The 

procedure on the left side demonstrates the product development process according to (Ehrlenspiel and 

Meerkamm, 2013). The illustration on the right side of Figure 5 shows the same two development 

phases (Model and Prototype) in the virtual product development.  

This small process shows one product design iteration, using CAD- and FE-Simulation tools. For each 

step, at least one engineer is necessary to fulfil the given tasks. The design engineer generates the part, 

using 3D-CAD-Systems, and then transfers the data to the simulation engineer. With the new 

simulation-generated information, design enhancements are made by the design department. After 

these refinements, the part will be simulated again and is then ready for manufacturing or testing.  

 

Figure 5: Comparison of the established (left) and the virtual development process (right) 

5.1 Example of changing tasks for design and simulation engineers 

Figure 6 shows a possible example how the general roles of design and simulation engineers could 

change with data-driven engineering tools. In contrast to the common process in today’s product 

development environment (Figure 5 on the right side), data-driven product development shifts the 

roles of design and simulation departments. The design division is still responsible for the generation 

of 3D-design data, but by using the new data-driven software tools, they are able to generate and start 

an automatic FE-Simulation. A possible solution for this method is elaborated in chapter 4.1, with the 

supporting pre-processing procedure. After a successful automatic simulation run, the result can be 

reviewed with the plausibility check method. This method is explained in detail for the simulation of a 

single part in chapter 4.2.4.  

If the outcome of the method is plausible, the design engineers can use the simulation result for a part 

revision. If the simulation is classified ‘non-plausible’, the design engineer should repeat the 

simulation or work together with the simulation department to achieve a plausible simulation result. 

After the reengineering of the design, a second simulation can be initiated, again with the application 

of the data-driven automated pre-processing tool. But this time, the simulation department is 

responsible for the simulation. The engineer can use the assisting tool, to reduce the time of standard 

and repetitive procedures, while generating a simulation. Therefore, the employees are able to 

concentrate more on the complex items of the simulation e.g. non-linear materials or contact problems. 

If the virtual testing shows a positive result, the part is ready for manufacturing or final testing. 

Otherwise, more iterations need to be arranged.  
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Figure 6: Example of new roles for design and simulation departments in the design process  

In this small example, many role changes can be observed. An overview of these changes is shown in 

Figure 7. The illustration represents the new responsibilities of design and simulation engineers. In the 

picture, the color distinguishes the tasks between new and consisting tasks. For the design department 

the main business, the part design, is still an important component of their work. Additionally to that, 

the application of data-driven tools becomes inevitable. Furthermore, the evaluation of the results will 

be a new area of responsibility, which overlaps with the simulations department. Both divisions need 

to work together to achieve the best possible results. 

 

Figure 7: Comparison of the new responsibilities between design and simulation engineers  

The duties of the simulation engineers are changing likewise. One important new task is the 

classification of simulation results for the database. The simulation engineer has to provide and 

maintain the database with plausible simulation results for given parts or problems. Only with this 

database, the data-driven tools are able to perform good results. In general, the new assistant-systems 

need to be supervised by the simulation engineers to check if they are still working correctly and 

providing good results. A consisting task is and will be the final FE-Simulation to examine the product 

properties and compare the result to the defined specifications. Another new work package for 

simulation engineers is the examination of non-plausible results. If a design engineer receives a non-

plausible result and is not able to solve the problem by its own, the simulation engineer provides 

assistance to overcome the difficulty with the specific simulation. In order to cope with these new 

responsibilities, the existing expertise of the simulation department is necessary. 

These new changes in the distribution of roles lead to general advantages for the product development 

process and the according employees. Figure 8 lists all these positive influences.  

 

Figure 8: Advantages of the data-driven product development 

2574



ICED19 

5.2 Roles / Characters 

With a changing product development process, also the number of different people working in these 

domains will change as follows (Figure 9 demonstrates the changes between the current development 

process on the left and the future process on the right): 

 Design engineers are becoming more and more product development engineers and the total 

number will increase with more products coming to the market in shorter time. 

 Both product and process simulation is getting more important and the number of people needed 

in these domains is increasing. 

 The number of testing engineers will decrease as well as the number of engineers in 

manufacturing. Especially because the available data helps to understand, which tests are 

necessary and therefore increase the productivity and decrease the scrap rate in production.  

 Data can help all different domains to perform their job faster and better. However, new roles are 

necessary to do this. At first, data scientists are needed to cope with the amount of data and to 

perform stable and statistically verifiable analyses. Also, expert knowledge about the underlying 

processes in development or production are crucial.  

Therefore, data affine experts from the different fields (product development, simulation, testing, 

production, etc.) are very important people and the industry must acquire available experts, before the 

competitor acquires these data affine engineers with expert knowledge in their domain. Often these 

people can be found at research institutes or directly in the master programs of universities (Davenport 

and Patil, 2012). 

 

Figure 9: Qualitative shift in the number of people (size of the balloons) in certain domains 
and the importance of data in a future product development process (right) compared to the 

current people and their domains in current product development processes (left) 

6 CONCLUSION AND OUTLOOK 

In this paper, the transition from current product development processes to a data driven / simulation 

driven product development process is described. A tool for automatic plausibility checks of 

simulation data for the product developer and a method to facilitate the process of setting up a 

simulation are presented briefly, including the impact and the advantages of such tools on a future 

product development process. The transitions and changes of different roles and domains are shown. 

The adjustments in the process of product development are described and compared to the current status.  

Data is an essential element in the transition of currently established methods and tools towards 

Digital Engineering. Besides the important steps of relational storage and collection of the data, the 

analysis of the data with expert knowledge from the domain is and will be highly relevant. 

The volume of data will increase in the coming years and therefore the processing of data will become 

more important. With the right and efficient use of the provided data, it is possible to decrease the 

development time and increase the quality of new products. 

2575



   ICED19 

REFERENCES 

Aggarwal C. (2015), Data Mining. The Textbook. Springer International Publishing, New York 

https://doi.org/10.1007/978-3-319-14142-8 

Bohn B., Garcke J., Iza-Teran R., Paprotny A., Peherstorfer B., Schepsmeier U., and Thole C.A. (2013), 

“Analysis of Car Crash Simulation Data with Nonlinear Machine Learning Methods”, International 

Conference on Computational Science, ICCS 2013, Procedia Computer Science, pp. 621–630. 

Chapman P., Clinton J., Kerber R., Khabaza T., Reinartz T., Shearer C., and Wirth R. (1999), CRISP-DM 1.0. 

Step-by-step data mining guide, CRISP-DM consortium. 

Cleve, J. and Laemmel, U. (2016), Data Mining. De Gruyter, Berlin https://doi.org/10.1515/9783110456776 

Davenport, T.H. and Patil, D.J. (2012), Data scientist: The sexiest Job of the 21st century. Harvard Business 

Review, pp. 70–76.  

Ehrlenspiel K. and Meerkamm H. (2013), Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, 

Zusammenarbeit. Carl Hanser Verlag, München https://doi.org/10.3139/9783446421578 

Han J., Kamber M. and Pei J. (2012), Data Mining. Concepts and Techniques. Morgen Kaufmann, Waltham 

https://doi.org/10.1016/C2009-0-61819-5 

IBM Corporation. (2012), “IBM SPSS Modeler CRISP-DM Handbuch”. IBM Corporation. Available at: 

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/15.0/de/CRISP-DM.pdf 

(11.06.2018 - 15:36) 

Kestel P. and  Wartzack S. (2015), “Konzept für ein wissensbasiertes FEA-Assistenzsystem zur Unterstützung 

konstruktionsbegleitender Simulationen”, DfX Symposium, Herrsching, 2015, 10.07. - 10.08.2015, Tutech 

Verlag, Hamburg, pp. 87–98. 

Kestel, P., Schneyer, T. and  Wartzack, S. (2016), “Feature-based approach for the automated setup of accurate, 

design-accompanying Finite Element Analyses”. 14th International Design Conference. Dubrovnik, 

05.16.2016 – 05.19.2016, pp. 697–706. 

Kestel P., and Wartzack S. (2016), “Wissensbasierter Aufbau konstruktions-begleitender Finite-Element-

Analysen durch FEA-Assistenzsystem”, Entwerfen Entwickeln Erleben, Dresden Germany, 06.30. – 

07.01.2016, TUDpress, Dresden, pp. 315–329. 

Larose D. (2006), Data Mining Methods and Models. John Wiley and Sons, Hoboken, New Jersey 

https://doi.org/10.1002/0471756482.index 

Runkler T. (2010), Data-Mining. Methoden und Algorithmen intelligenter Datenanalyse. Vieweg + Teubner, 

Wiesbaden https://doi.org/10.1007/978-3-8348-9353-6 

Spruegel, T.C. and Wartzack, S. (2016), “Das FEA-Assistenzsystem - Analyseteil FEdelM”, Entwerfen 

Entwickeln Erleben, Dresden Germany, 06.30. – 07.01.2016, TUD press, Dresden, pp. 463–474. 

Spruegel, T.C., Rothfelder, R., Bickel, S., Grauf, A., Sauer, C., Schleich, B. and Wartzack, S. (2018), 

“Methodology for plausibility checking of structural mechanics simulations using Deep Learning on 

existing simulation data”, NordDesign 2018, Linköping Sweden, 08.14. – 08.17.2018, LiU Tryck, 

Linköping, Session 1A Machine Learning. 

Tan P.-N., Steinbach M., and Kumar V. (2006), Introduction to Data Mining. Pearson/ Addison-Wesley, Boston. 

Trage, S., Saier, M., Amadori, D. and Reschke, K. (2018), “Whitepaper Innovationen wie am Fließband – 

Auswirkungen der Digitalisierung auf die Innovation und Entwicklung von Produkten in 

Fertigungsunternehmen” [online] KPMG. Available at: www.hub.kpmg.de (11.06.2018 - 16:56). 

Wirth R. and Hipp J. (2000), “CRISP-DM: Towards a standard process model for data mining”, 4th 

International Conference on the Practical Applications of Knowledge Discovery and Data Mining, 

Manchester, pp. 29–39. 

Wolf C. and Hennig B. (2010), Handbuch der sozialwissenschaftlichen Datenanalyse. Springer, Wiesbaden 

https://doi.org/10.1007/978-3-531-92038-2 

Vajna S., Weber C., Zeman K., Hehenberger., Gerhard D. and Wartzack S. (2018), CAx für Ingenieure: Eine 

praxisbezogene Einführung. Springer, Berlin https://doi.org/10.1007/978-3-662-54624-6 

ACKNOWLEDGMENTS 

The authors would like to thank the NVIDIA Corporation and the academic GPU Grant Program for 

the donation of a Tesla GPU. 

This research work is part of the FAU “Advanced Analytics for Production Optimization” project 

(E|ASY-Opt) and funded by the Bavarian program for the “Investment for growth and jobs” objective 

finance by the European Regional Development Fund (ERDF), 2014-2020. It is managed by the 

Bavarian Ministry of Economic Affairs and Media, Energy and Technology. The authors are 

responsible for the content of this publication. 

2576


	049_ICED2019_460_CE
	049_ICED2019_460_PE
	203_ICED2019_557_PE
	260_ICED2019_209_CE
	260_ICED2019_209_PE

