
Metaproperty-guided Deletion from the Instance-Level
of a Knowledge Base

Claudia Schon1 ?, Steffen Staab1,2, Patricia Kügler3 ?, Philipp Kestel3, Benjamin
Schleich3 and Sandro Wartzack3

{schon,staab}@uni-koblenz.de

1 Institute for Web Science and Technologies, University of Koblenz-Landau, Germany
2 Web and Internet Science Research Group, University of Southampton, UK

3 Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract. The ontology modeling practice of engineering metaproperties of con-
cepts is a well-known technique. Some metaproperties of concepts describe the
dynamics of concept instances, i.e. how instances can and cannot be altered. We
investigate how deletions in an ontology-based knowledge base interact with the
metaproperties rigidity and dependence. A particularly useful effect are delete
cascades. We evaluate how rigidity and dependence may guide delete cascades
in an engineering application. A case study in the area of product development
shows that beyond explicitly defined deletions, our approach achieves further au-
tomated and desirable deletions of facts with high precision and good recall.

1 Introduction

Ontological metamodeling is a well-known technique which is used in various areas
[10,8]. Intuitively, metaproperties allow concepts and roles to be addressed like domain
elements and to be assigned to metaclasses or to be linked via meta roles.

In this paper we consider the metaproperties rigidity and dependence and their in-
teraction with deletions. A property is rigid, if it is essential to all its instances. For
example in most scenarios the property of being a petrol usually represented as the
concept Petrol is rigid, since nothing can stop being a petrol. For the sake of simplic-
ity, we will avoid the term property in the following and say that the corresponding
concept Petrol is rigid. In contrast to this, the concept SubsidisedFuel is usually not
rigid, since such a fuel can start or stop being subsidised at any time.

A concept depends on another concept, if for each instance of the first concept there
is necessarily an individual of the second concept. For example, concept PetrolEngine
depends on concept Petrol . In other words: something cannot be a petrol engine without
being fueled by some kind of petrol.

Metaproperties not only provide information about concepts or their relationship to
one another, but also about dynamic aspects of the instances of a concept and describe
if and how they can be changed. For example the rigidity of concept Petrol indicates
that in general, it is not desirable to delete the fact that superplus is a petrol from the
knowledge base while maintaining all other facts about superplus. Moreover, deleting
? Work supported by DFG EVOWIPE.

the fact that superplus is a petrol removes an essential property of superplus such that
one could conclude that superplus no longer exists and should therefore be completely
removed from the knowledge base. The dependence metaproperty describes dynamic
aspects as well. For example, the fact that a petrol engine depends on the existence of
at least one petrol it can be fueled by indicates that in general, deleting these petrols
should result in the deletion of the fact that the engine in question is a petrol engine.
In accordance with delete cascades in relational databases, we call additional deletions
performed because of dependencies cascading deletions.

In general, metaproperties in a knowledge base (KB) depend on the conceptual-
ization of the domain. We suggest to account for the variability of conceptualizations
by explicitly modeling the context in which the KB is used. We use context-sensitive
metaproperties to model this aspect and to take the context into account when determin-
ing cascading deletions.

In many domains, cascading deletions are desired by the user. For example, in prod-
uct development, where the KB representation of a new product model is derived from
existing ones, it is necessary to modify the existing model representation to accomodate
the requirements of the new product. The reuse of existing models makes it necessary
to delete aspects from the KB which are not applicable anymore. The EVOWIPE 4

project is situated in the domain of product development and aims at developing meth-
ods to support the product developer in the process of deleting aspects from KBs. In the
domain of product development, the KB may harbor many dependencies that can be ex-
ploited to maintain the model validity by providing cascading deletions to the product
developer freeing him from error-prone manual work [13].

Related work in knowledge representation refers to the deletion of a symbol from
a knowledge base as a forgetting operation that affects the signature and the formula
set of a knowledge base [17], while the notion of contraction is used to refer to the
consistency-preserving deletion of facts from the knowledge base, which need not nec-
essarily affect the signature [9]. These contraction operators however do not support
cascading deletions.

Thus, we assume that when a product developer — or another knowledge represen-
tation-lay user — formulates a delete operation, intelligent assistance may and should
use the ontology and its metamodel in order to guide the deletion process such that a
new valid product model is represented in the ensued knowledge base.

In our example, deleting Petrol(superplus) has the following effect: the rigidity
of Petrol first leads to the forgetting of individual superplus (by deleting several facts
around superplus), as well as the cascading deletion of all assertions PetrolEngine(e)
for which superplus was the only petrol engine e could be fueled by.

Thus, the main contributions of this paper are:

– The modeling of knowledge about dynamics of concept instances through context-
sensitive metaproperties and the use of these metaproperties to obtain operators for
additional and cascading deletions. Sect. 3 formalizes several alternative operators
to accomplish additional and cascading deletions of instance-level assertions based
on metaproperties.

4 https://west.uni-koblenz.de/en/research/evowipe

https://west.uni-koblenz.de/en/research/evowipe

– An implementation of our approach for OWL [18] KBs with metaproperties stored
in annotations and SPARQL update queries to specify the deletions.

– A quantitative evaluation of our approach with a real KB from product develop-
ment. This evaluation presented in Sect. 4 confirms that the cascading deletions
performed by our operators are desired by the engineers working with the KB.

1.1 A Modeling Example from Product Development

Consider a KB K = (T ,A) that will serve as a running example throughout the paper:

T = {PetrolEngine ≡ ∃canBeFueledBy .Petrol , (1)
Manifold v ∃isConnectedTo.PetrolEngine, (2)
CatalyticConverter v ∃isWeldedTo.Manifold , (3)
ExhaustPipe v ∃isConnectedTo.Manifold , (4)
PassengerSeat v ∃isSecuredBy .SeatBelt} (5)

A = {PetrolEngine(pte),

Petrol(superplus),

Petrol(v -power),

canBeFueledBy(pte, superplus),

Manifold(mf),

isConnectedTo(mf , pte),

ExhaustPipe(ep),

isConnectedTo(ep,mf),

CatalyticConverter(cc),

isWeldedTo(cc,mf)}

Suppose the KB is used in product development where it is reasonable to assume that
the manifold of a car depends on the petrol engine and the exhaust pipe depends on
the manifold implying that each individual of concept Manifold is related via role
isConnectedTo to an individual of concept PetrolEngine . The same applies to in-
dividuals of concept ExhaustPipe regarding concept Manifold . These dependencies
can be modeled by manually adding the dependence metaproperty to the concepts
ExhaustPipe and Manifold . Please note that the dependency cannot be read from the
structure of the axioms. For example, although axiom (5) has the same structure as
axiom (2), the PassengerSeat is not dependent on SeatBelt .

Assume that petrol engine pte is supposed to be replaced by an electric engine.
It is reasonable to assume that deleting the petrol engine should result in the deletion
of the manifold mf since it depends on the petrol engine which then should result in
the deletion of the exhaust pipe ep since it depends on the manifold mf . In accor-
dance with delete cascades in relational databases, we call these additional deletions of
manifold(mf) and exhaustpipe(ep) cascading deletions. In Sect. 3 we show how to
accomplish these cascading deletions with the help of metaproperties.

2 Background and Preliminaries

We introduce syntax and semantics of the description logic (DL) SHOIN which cor-
responds to OWL-DL. Given a set of atomic roles NR, the set of roles is defined as
NR ∪{R− | R ∈ NR}, where R− denotes the inverse role corresponding to the atomic

role R. A role inclusion axiom is an expression of the form R v S, where R and S
are roles. A transitivity axiom is of the form Trans(S) where S is a role. An RBox R
is a finite set of role inclusion axioms and transitivity axioms. v∗ denotes the reflex-
ive, transitive closure of v over {R v S, Inv(R) v Inv(S) | R v S ∈ R}. A role
R is transitive in R if there exists a role S such that S v∗ R, R v∗ S, and either
Trans(S) ∈ R or Trans(Inv(S)) ∈ R. If no transitive role S with S v∗ R exists, R
is called simple. Let NC be the set of atomic concepts and NI a set of individuals. The
set of concepts is inductively defined using the following grammar:

C →> | ⊥ | A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C |≥ nS | ≤ nS | {a}

where A ∈ NC , Ci are concepts, R ∈ NR, S ∈ NR a simple role and a ∈ NI .
A general concept inclusion (GCI) is of the form C v D with C andD concepts. A

TBox T is a finite set of GCIs also called axioms. In our setting, an ABox A is a finite
set of assertions of the form A(a) and R(a, b), with A an atomic concept, R an atomic
role and a, b are individuals from NI . A knowledge base (KB) K is a triple (R, T ,A)
with signature Σ = (NC , NR, NI). The tuple I = (·I , ∆I) is an interpretation for K
iff ∆I 6= ∅ and ·I assigns an element aI ∈ ∆I to each individual a, a set AI ⊆ ∆I to
each atomic concept A, and a relation RI ⊆ ∆I ×∆I to each atomic role R. ·I then
assigns values to more complex concepts and roles as described in Tab. 1. I is a model
of K (I |= K) if it satisfies all axioms and assertions in R, T and A as shown in Tab.
1. If there is no model for K, K is called inconsistent. An assertion A of the form B(a)
or R(a, b) is entailed by a KB K, denoted by K |= A, iff I |= A for all models I of K.

2.1 Justification-based Deletion

Since this paper only considers deletions of ABox assertions, we restrict the following
definitions to ABox assertions. In the following, Ad denotes the set of ABox assertions
that are supposed to be deleted. When deletingAd from a KB, it is not sufficient to only
remove all elements contained inAd from the ABox since even after their removal they
might still be entailed by the KB.

Definition 1 (Justification [11]). Let K = (R, T ,A) be a KB and α be an ABox as-
sertion. J ⊆ A is a justification for α in K if (R, T ,J) |= α and for all J ′ ⊂ J ,
(R, T ,J ′) 6|= α. The set of all justifications for α in K is denoted by Just(α,K).

To accomplish the deletion of Ad from a KB K, we suggest to follow [19] and use root
justifications.

Definition 2 (Root Justification [19]). LetK = (R, T ,A) be a KB,Ad = {α1, . . . , αn}
a set of ABox assertions and Just(αi,K) the set of all justifications of αi inK. A set J ∈
∪ni=1Just(αi,K) is a root justification forAd inK iff there is no J ′ ∈ ∪ni=1Just(αi,K)
with J ′ ⊂ J .

Since the set of all root justifications for Ad in K = (R, T ,A) corresponds to the
set of all minimal subsets of A which together with R and T imply an assertion in
Ad, it is sufficient to delete exactly one element from each root justification in order to
prevent any assertion in Ad from being entailed. This corresponds to the construction
of a minimal hitting set for the set of all root justifications for Ad in K.

Concepts and Roles

>I = ∆I {a}I = {aI}
⊥I = ∅ (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI

(¬C)I = ∆I\CI (∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}
(C tD)I = CI ∪DI (≥ n S)I = {x | |{y | (x, y) ∈ SI}| ≥ n}
(C uD)I = CI ∩DI (≤ n S)I = {x | |{y | (x, y) ∈ SI}| ≤ n}

(R−)I = {(y, x) | (x, y) ∈ RI}
TBox & RBox axioms ABox assertion

C v D ⇒ CI ⊆ DI A(a) ⇒ aI ∈ AI
R v S ⇒ RI ⊆ SI R(a, b) ⇒ (aI , bI) ∈ RI

Trans(R) ⇒ (RI)+ ⊆ RI

Table 1: Model-theoretic semantics of SHOIN . R+ is the transitive closure of R.

Definition 3 (Hitting Set). Let S = {S1, . . . Sn} be a set of sets. A hitting set for S is
a set H ⊆ ∪ni=1Si with H ∩ Si 6= ∅,∀1 ≤ i ≤ n. If no proper subset of H is a hitting
set for S, H is called a minimal hitting set.

Definition 4 (Deletion). Let K = (R, T ,A) be a KB and Ad a set of ABox assertions.
Let furthermore J be the set of all root justifications for Ad in K. A deletion Del of Ad

in K is a minimal hitting set of J .

Intuitively, a deletion Del of Ad in K is a minimal subset of the ABox A such that no
element in Ad is entailed by (R, T ,A \Del).

In general, there can be several minimal hitting sets for the set of all root justifica-
tions for the assertions inAd. Each of these hitting sets corresponds to a deletion ofAd

in K. Choosing one specific deletion can be done by using various semantics [2].

3 Metaproperty-guided Deletion

We now address the task to perform cascading deletions of ABox assertions from a
KB. We will use the context-sensitive metaproperties rigidity and dependence to guide
deletion and to achieve the desired cascading behavior. These metaproperties have to
be added manually to the KB.

3.1 Context-sensitive Metaproperties

A concept is called rigid, if it is essential to all its individuals. For instance, in most
scenarios the concept Person is rigid, since one cannot stop being a person. In contrast
to that, the concept Student is not rigid, because one can start or stop being a student
at any time. We adapt this notion of rigidity to DL KBs and specify this metaproperty
such that it has a certain scope of validity which we denote by context.

Definition 5 (Set of Rigid Concepts, Rigid Assertions). For a KB K = (R, T ,A)
with signature Σ = (NC , NR, NI) and a context ct . The set Rigid(K, ct) ⊆ NC de-
notes the set of rigid concepts in context ct. An ABox assertion stating that an individual
belongs to a concept that is element of Rigid(K, ct) is called rigid assertion w.r.t. ct.

If the KB K is clear, we slightly abuse notation such that for a set of ABox assertions
S, Rigid(S, ct) denotes the set of rigid assertions in S w.r.t. context ct.

In the scope of this paper, we consider concept C to be dependent on concept D, if
for all instances c of C there necessarily exists an instance d of D. As an example, [10]
uses the concept of a Parent which is dependent on the concept Child. In other words:
one cannot be a parent without having a child. We adapt this notion of dependency to
description logic KBs and specify these dependencies w.r.t. a certain contex.

Definition 6 (Set of Dependencies / Violated Dependencies). Let K = (R, T ,A) be
a KB and ct a context identifier. In context ct concept C depends on concept D w.r.t.
role R in K, if in context ct for every individual c with K |= C(c) there necessarily
exists an individual d ∈ Ind(A) with K |= D(d) and K |= R(c, d). For a context ct,
the set of dependencies in K is given as

Dep(K, ct) = {(C,D,R) | in context ct concept C depends on concept D

w.r.t. role R in K}.

The set of assertions violating a dependency in an KB and a context ct is defined as

violatedDep(K, ct) = {C(c) | (C,D,R) ∈ Dep(K, ct) and K |= C(c) and

¬∃d ∈ Ind(A) with K |= R(c, d) and K |= D(d)}

Please note that, one concept may be dependent on another concept in one context
and not in another.

3.2 Requirements for Metaproperty-guided Deletion

Rigidity provides information about the epistemic status of concepts, which can be used
to understand the dynamics of instances of this concept. Given a knowledge base K at
time t1 a deletion transaction initiated by a user will cause a transition that makes K
become K′ at time t2. Metaproperties indicate what may and what should not be an
allowed transition. The rules that guide such transitions vary for rigid and non-rigid as-
sertions. Furthermore, these rules take dependencies into account. Systematic analysis
of different examples has led to the following requirements for deletion:

1. The deletion of a rigid assertion C(a) should result in forgetting individual a from
the signature of the KB. This corresponds to removing all assertions containing
individual a from the ABox.

2. The deletion of a non-rigid assertion D(b) should result in the contraction of D(b)
from the KB. This corresponds to determining a deletion for D(b) in the KB and
removing this deletion from the KB. The resulting KB can still contain assertions
mentioning individual b.

3. The deletion of an assertion should be performed such that the set of rigid assertions
removed by the deletion is minimal w.r.t set inclusion.

4. The deletion should have a cascading behavior: a deletion can lead to the viola-
tion of dependencies leading to further deletions, which in turn can violate depen-
dencies, and so on. These deletions caused by dependencies are called cascading
deletions.

Please note that cascading deletions are fundamentally different from deleting inferred
assertions. The assertions that are removed by cascading deletion are not assertions that
could be inferred, but assertions that must be deleted due to violated dependencies.

3.3 Rigidity-guided Deletion

We now introduce rigidity-guided deletion which considers the rigidity metaproperty
and fulfills requirements 1, 2 and 3.

Example 1. Consider the KB given in Sect. 1.1. Suppose this KB is used in the context
of product development pd and assume that Petrol is a rigid concept in this context.
Hence, Petrol ∈ Rigid(K, pd). Assume PetrolEngine(pte) is supposed to be deleted
i.e. Ad = {PetrolEngine(pte)}. This deletion can be accomplished by deleting one of
the two following sets from the ABox, which both constitute a deletion of Ad from K:

Del1 = {PetrolEngine(pte),Petrol(superplus)} (6)
Del2 = {PetrolEngine(pte), canBeFueledBy(pte, superplus)} (7)

The rigidity of Petrol indicates that it is preferable not to delete assertions using this
concept. Intuitively, it makes sense not to remove the information that superplus is
a petrol but rather the information that pte can be fueled by petrol. Which leads to
choosing Del2 and fulfills requirement 3.

Let us now consider a different scenario, where for some reasons we really want
to delete the fact that superplus is a petrol, meaning Ad = {Petrol(superplus)}. The
rigidity of concept Petrol indicates that an essential property of individual superplus is
supposed to be deleted. Therefore, we suggest to entirely remove superplus from KB.
The result is the deletion of Petrol(superplus) and canBeFueledBy(pte, superplus).
Please note that the deletion of canBeFueledBy(pte, superplus) is not necessary to
prevent Petrol(superplus) from being entailed but rather constitutes an additional dele-
tion caused by the rigidity metaproperty of Petrol . This fulfills requirement 2.

The rigidity-guided deletion puts these ideas into practice by minimizing the set of
removed rigid assertions and forgetting individuals occurring in rigid assertions which
will be deleted.

Definition 7 (Rigidity-Guided Deletion). LetK = (R, T ,A) be a KB, ct be a context
andAd the set of ABox assertions supposed to be deleted from K. Let Del be a deletion
of Ad with minimal Rigid(Del , ct) w.r.t. set inclusion. A rigidity-guided deletion of Ad

from K in context ct is

Krig
Ad

=
(
R, T , (A \Del) \ RigidDel(A,Del , ct)

)
with

RigidDel(A,Del , ct) = {D(a), R(a, b), R(b, a) ∈ A | ∃C(a) ∈ Rigid(Del , ct)}.

Please note that there can be more than one deletion Del with minimal Rigid(Del , ct).
In this case, the result of the rigidity-guided deletion is not specified and we suggest to
let the user decide which of the solutions best implements her intentions.

3.4 Dependency-guided Deletion

Now we introduce dependency-guided deletion which considers the dependency meta-
property and fulfills requirement 4.

Example 2. Consider the KB K = (T ,A) given in Sect. 1.1 that could be used in two
different contexts namely product development (pd) and a car repair shop (crs). In the
context of product development, the manifold depends on the petrol engine. Removing
a specific motor in this context is usually only done if a different kind of motor is
supposed to be used. Therefore, it is desired that the deletion of the engine results in
the deletion of the manifold which might result in further deletions. In the context of a
car repair shop, it is usually desirable to replace only those parts for which replacement
is absolutely necessary. Deleting a motor in this context usually means that a defective
motor is to be replaced by a new motor of the same type. Therefore, it is desirable in
this context not to remove the manifold. The fact that the catalytic converter is welded
to the manifold leads to dependencies in both contexts, meaning that the removal of the
manifold results in the removal of the catalytic converter in both contexts. This leads to
the following set of dependencies:

Dep(K, pd) = {(PetrolEngine,Petrol , canBeFueledBy), (8)
(Manifold ,PetrolEngine, isConnectedTo), (9)
(ExhaustPipe,Manifold , isConnectedTo), (10)
(CatalyticConverter ,Manifold , isWeldedTo)} (11)

Dep(K, crs) = {(CatalyticConverter ,Manifold , isWeldedTo)} (12)

We now consider a product developer who wants to replace the petrol engine by
an electric engine. For this, he wants to delete PetrolEngine(pte) leading to Ad =
{PetrolEngine(pte)}. To prevent Ad from being entailed, one of the two sets Del1
given in (6) and Del2 given in (7) presented in Ex. 1 have to be deleted from the
ABox. Suppose we choose Del2 . Taking a closer look at the ABox reveals that after
deleting PetrolEngine(pte) from the ABox, manifold mf is not connected to an indi-
vidual of concept PetrolEngine anymore. Due to the open world semantics, the fact
that there is no petrol engine connected to the manifold mf explicitly mentioned in
the ABox does not contradict Manifold(mf), which is still contained in the ABox. We
argue that this might not correspond to the product developer’s intention. We suggest
so called dependency-guided deletion which uses the dependence metaproperty speci-
fied in the current context in order to determine additional deletions which are likely to
be intended by the user. In our case, we delete Manifold(mf) as well, since the dele-
tion of PetrolEngine(pte) violated dependency (9). Furthermore, dependency-guided
semantics has a cascading behavior. In our example, this means that the deletion of
Manifold(mf) leads to the violation of dependencies (10) and (11) resulting in the
deletion of both ExhaustPipe(ep) and CatalyticConverter(cc).

Overall, the deletion of PetrolEngine(pte) in the context of product development
leads to the deletion of the following set of assertions:

{PetrolEngine(pte), canBeFueledBy(pte, superplus),Manifold(mf),

ExhaustPipe(ep),CatalyticConverter(cc)}

Next consider a mechanic in a car repair shop who wants to replace a broken petrol en-
gine by a new petrol engine of the same type leading to deletion of PetrolEngine(pte)
in the context crs . Since the deletion of {PetrolEngine(pte)} does not violate any
dependencies in this context, no cascading deletions are performed.

Next we define the Casc-operator. Given a certain context, a KB K and a set of
assertions Ad that are supposed to be deleted, the Casc-operator computes a set of
ABoxes. Each of these ABoxes constitutes a possible result of the cascading deletion
for the context under consideration.

Definition 8 (Casc-operator). Let K = (R, T ,A) be a KB, ct a context and Ad a set
of assertions that are supposed to be deleted from K. Then

Casc1(K, ct,Ad) = {A \Del | Del a deletion forAd in K}

For n ∈ N, n ≥ 1

Cascn+1(K, ct,Ad) = {S \Del | S ∈ Cascn(K, ct,Ad) and Del a deletion for

ViolatedDep((R, T , S), ct) in (R, T , S)}

There is always an i > 0 such that Casci(K, ct,Ad) = Cascj(K, ct,Ad) for all
j ≥ i. For convenience, for this i we set Casc(K, ct,Ad) = Casci(K, ct,Ad).

Definition 9 (Dependency-Guided deletion). Let K = (R, T ,A) be a KB, ct a con-
text, and Ad a set of assertions that is supposed to be deleted from K. Then Kdep

Ad
=

(R, T ,Adep) with Adep the largest (w.r.t. set inclusion) set in Casc(K, ct,Ad) is a
dependence-guided deletion of Ad from K in context ct.

In general there can be more than one element which is maximal w.r.t. set inclusion in
Casc(K, ct,Ad). In this case, the dependency-guided deletion is not specified and we
suggest to let the user decide which of the solutions best implements her intentions.

The combination of the rigidity and dependency metaproperties will be investigated
in the next section.

3.5 Cascading Deletions

The operator for cascading deletion considers both the rigidity and the dependence
metaproperty and fulfills all four requirements given in Sect. 3.2.

Combining the behavior of rigidity- and dependency-guided deletions does not only
add the deletions performed by each individual deletion but interactions between rigid
concepts and dependencies can lead to further deletions: the cascading deletions caused
by the dependency-guided deletion can lead to the deletion of rigid assertions which
leads to the deletion of all assertions containing certain individuals. This can result into
the violation of dependencies.

Recall that by Def. 7 for a context ct, RigidDel(A,Del , ct) denotes the set of all
assertions in the A containing an individual which occurs in a rigid assertion in Del .

Definition 10 (Cascrd-operator). Let K = (R, T ,A) be a KB, ct a context, andAd a
set of assertions that is supposed to be deleted from K. Then

Cascrd
1 (K, ct,Ad) = {(A \Del) \ RigidDel(A,Del , ct) | Del a deletion of Ad in K}

For n ∈ N, n ≥ 1

Cascrd
n+1(K, ct,Ad) = {S \Del ′ | S ∈ Cascrd

n (K, ct,Ad) and Del a deletion of

ViolatedDep((R, T , S), ct) in (R, T , S) and

Del′ = Del ∪ RigidDel(S,Del , ct)}

There is always an i > 0 such that Cascrd
i (K, ct,Ad) = Cascrd

j (K, ct,Ad) for all
j ≥ i. For convenience, for this i we set Cascrd(K, ct,Ad) = Cascrd

i (K, ct,Ad).

Definition 11 (Cascading Deletion). LetK = (R, T ,A) be a KB, ct a context, andAd

a set of assertions that is supposed to be deleted fromK. ThenKrd
Ad

= (R, T ,Ard) with
Ard the largest (w.r.t. set inclusion) set in Cascrd(K, ct,Ad) is a cascading deletion of
Ad from K in context ct.

In general there can be more than one element that is maximal w.r.t. set inclusion in
Cascrd(K, ct,Ad). In this case, the cascading deletion is not specified and we suggest
let the user decide which of the solutions best implements her intentions.

Example 3. Consider the KB given in Ex. 1 together with the dependencies stated in
Ex. 2 and the following set of rigid concepts:

Rigid(K, pd) = {Petrol ,PetrolEngine,Manifold ,ExhaustPipe,

CatalyticConverter}

Consider a product developer who is confronted with the political decision that, for en-
vironmental reasons, superplus is no longer allowed to be used as petrol for newly
developed cars. Therefore, he wants to delete Petrol(superplus) leading to Ad =
{Petrol(superplus)}. In the first step, the rigidity of Petrol leads to the deletion of
both Petrol(superplus) and canBeFueledBy(pte, superplus). In the resulting ABox,
dependency (8) is violated since there is no petrol left that can be used to fuel petrol
engine pte. Therefore, in the next step PetrolEngine(pte) is deleted. The rigidity of
concept PetrolEngine causes individual pte to be entirely removed from the ABox
leading to the deletion of PetrolEngine(pte) and isConnectedTo(mf , pte). Again de-
pendencies are violated which leads to further cascading deletions. The overall result
of the Cascrd-operator is Cascrd(K, ct,Ad) = {{Petrol(v -power)}}. The ABox in
Cascrd(K, ct,Ad) constitutes the ABox resulting from the cascading deletion.

3.6 Design Decisions

In belief revision, a deletion operator should usually fulfill the so-called success postu-
late, which states that deletion of a non-tautological statement from a KB results in a
KB that does not entail the statement. This is only possible, if consistency is established.

This is why we decided to design the metaproperty-guided deletion operators such that
they remove all inconsistencies present in a KB even if they have nothing to do with
the deletion actually performed. Following this line, we decided to design the operators
for both dependency-guided deletion and the cascading deletion such that they delete
assertions that have already violated dependencies in the original ABox and even if
they have nothing to do with the deletion performed. This behavior of the operators is
desired in our project’s area of application of product development and is intended to
support the product developer. Other areas of application in which this behavior is not
desired are conceivable. For this, the deletion operators would have to be adjusted.

3.7 Implementation

We have implemented the three deletion operators as an intelligent assistant5 which
uses SPARQL update queries (with empty insert statement) to specify the deletions.
Our implementation uses Pellet [22] for the computation of justifications.

4 Evaluation

To evaluate if the cascading deletions are user-intended, we performed a case study6.
with a KBK that formalizes a test rig. Engineers developed the KB [13] in the EVOWIPE
project. The KB contains 15 concepts, 17 roles and 26 individuals. After a training on
the metaproperties dependence and rigidity provided by us, the engineers decided where
to add these metaproperties to their ontology. In the resulting KB, two concepts carry
the rigidity metaproperty and 8 dependencies are stored (as annotations of concepts).

To evaluate if the deletions performed by the cascading deletion are desired, a ques-
tionnaire consisting of 40 questions of the form presented in Fig. 1 was used. We sys-
tematically created the questions for the survey. In general, we observed that:

– If the deletion of D(b) leads to the cascading deletion of C(a), then often exists R
such that K |= R(a, b).

– If the deletion of R(a, b) leads to the cascading deletion of C(a), then often exists
D such that K |= D(b).

Of course other cases are conceivable where the cascading deletion performs several
cascading steps, but for the systematic creation of the questions in the questionnaire we
have restrict ourselves to the two cases mentioned above.

We determined all pairs (C(a), D(b)) and (C(a), R(a, b)) with K |= C(a), K |=
D(b) and K |= R(a, b). This has led to 183 assertion pairs. For 20 of these pairs, the
deletion of the second component leads to a cascading deletion of the first component.
For all remaining pairs, the deletion of the second component does not affect the first
component.

5 Implementation available at: https://github.com/Institute-Web-Science-
and-Technologies/SparqlUpdater

6 The KB and the questionnaire used in the case study are available at: https:
//west.uni-koblenz.de/sites/default/files/research/datasets/
evaluation testrig.zip

https://github.com/Institute-Web-Science-and-Technologies/SparqlUpdater
https://github.com/Institute-Web-Science-and-Technologies/SparqlUpdater
https://west.uni-koblenz.de/sites/default/files/research/datasets/evaluation_test rig.zip
https://west.uni-koblenz.de/sites/default/files/research/datasets/evaluation_test rig.zip
https://west.uni-koblenz.de/sites/default/files/research/datasets/evaluation_test rig.zip

For the questionnaire, we selected 11 pairs where the deletion of the second com-
ponent leads to the cascading deletion of the first component and randomly selected 29
pairs where the deletion or the second component does not have any effect on the first
component. We have intentionally oversampled such that the proportion of cascading
deletions in the questionnaire is much higher than in the whole set of pairs to prevent
subjects from being inclined to always pick the same negative answer.

Results and Discussion Seven experts from product development, two of whom are
co-authors of this paper, answered the questionnaire consisting of 40 questions, lead-
ing to 280 asked questions out of which 277 were answered. When they answered the
questions, the engineers used the KB and their background knowledge. For inter-rater
agreement, we counted both ’rather yes’ and ’yes’ answers as ’yes’ and both ’rather
no’ and ’no’ answers as ’no’ and computed Fleiss’ Kappa for the results. The Fleiss’
Kappa value indicates by how much the raters agreement exceeds an agreement if the
questionnaires are completed randomly. For our questionnaire, the Fleiss’ Kappa value
is 0.561. For the interpretation of Kappa values, [14] suggest κ < 0 corresponds to
poor agreement, 0 ≤ κ < 0.2 to slight agreement, 0.2 ≤ κ < 0.4 to fair agreement,
0.4 ≤ κ < 0.6 to moderate agreement, 0.6 ≤ κ < 0.8 to substantial agreement and
0.8 ≤ κ ≤ 1 to (almost) perfect agreement.

For evaluation of precision and recall, we created a gold standard answer of either
’yes’ or ’no’ for each of the 40 questions by majority vote of the responses. We com-
pared the result of the majority vote to the result of the operator for cascading deletions
leading to a precision of 1 and recall of 0.48.

The precision of 1 indicates, that the engineers agreed with all 11 cascading dele-
tions. There is no case were the cascading deletion deletes an assertion and the engineers
want to keep this assertion. The comparatively lower recall of 0.48 suggests that there
are deletions desired by the engineers which are not performed by our approach. Ana-
lyzing the questions where most engineers wanted to delete the suggested assertion but
our approach did not perform this deletion reveals three causes for the discrepancies:

– For some questions, our approach did not perform the deletion desired by the engi-
neers because the corresponding metaproperties were not set in the ontology. Since
the metaproperties for the case study were set manually during the creation of the
ontology, they were forgotten in some places. This was only revealed after an-
alyzing the results of the questionnaire. The engineers are currently working on
extracting some of these metaproperties automatically with the help of revers engi-
neering which supports a systematic analysis of product structures and can be used
to extract some of the dependencies.

– In one case, a modeling error in the KB was revealed: The concept subfunction
was not modeled as a subconcept of the function concept. This modeling error
prevented the desired deletion from being implemented by our approach.

– In two cases the analysis revealed that the notion of dependency used by our ap-
proach is not sufficient. The engineers need counting dependencies in some cases,
i.e. something is only a subassembly if it has at least two parts. Our current no-
tion of dependency cannot map such counting dependencies and therefore cannot
perform the desired cascading deletions.

Assume the fact that
measuring normal forces belongs to class function
is supposed to be deleted. In your opinion, should the fact that
calculation(low rpm no.)via spring rate+valve position belongs to class solution principle
be deleted as well?
� yes � rather yes � rather no � no

Fig. 1: Example question from the questionnaire answered by seven experts from the FAU.

– In some cases, the analysis revealed that the engineers expected the dependencies
to be symmetric. For example concept solution principle is modeled to be de-
pendent on concept function w.r.t. role fulfils . Role fulfils is symmetric to role
isFulfiledBy . The engineers expected in this case that the fact that concept function
depends on concept solution principle w.r.t. role isFulfiledBy follows from the
KB, which currently is not the case. We think that this can be regarded as a mutual
dependency which is not yet supported by our current approach.

The engineers added the metaproperties whose absence had been noticed and fixed the
modeling error. On the improved KB, the precision of our approach is 1, recall has risen
to 0.7.

We want to focus on the observed counting dependencies as well as mutual de-
pendencies in future work in order to be able to cover more of the desired deletions.
Furthermore, we will analyze which of the other notions of dependencies mentioned in
[21] could be useful in the context of product development.

5 Related Work

Ontological metamodelling has a long tradition and is used in various areas [8]. We
build our approach on two of the metaproperties used in the OntoClean methodology
[10]. However in [10], the metaproperties are not used for the task of updating KBs.

The problem of belief revision and updating KBs has received much attention in re-
search [2]. Usually, approaches in this area have the goal to perform the desired changes
while maintaining as much of the original KB as possible. In the model-based approach
the set of models of the KB resulting from a change operation should be as close as
possible to the set of models of the original KB [16,12]. Opposed to the model-based
approach, in [15], [5] and [4] the number of axioms and assertions changed by the up-
date are supposed to be minimal. In [15], [5] and [4] instance level deletion, insertion
and repair are addressed for DL-Lite KBs. [7] addresses the same tasks for SHI KBs.
In all these approaches, the computed deletions are minimal and a cascading behavior
is not considered.

With respect to SPARQL update, [1] addresses the problem of handling inconsis-
tencies introduced by SPARQL updates in DL-LiteRDFS¬ which covers RDFS and con-
cept disjointness axioms. Different semantics of SPARQL ABox updates are defined
and skillful query-rewriting is used to perform the updates. These rewritings exploit the
fact that in DL-LiteRDFS¬ inconsistencies are caused by at most two ABox assertions
and furthermore rely on the fact that the ABox is materialized.

The cascading behavior of the dependency-guided deletion introduced in this paper
is related to the K-operator used in the autoepistemic description logic ALCK [6]. In-
tuitively, the K-operator can be interpreted as ’known to be’. For example the concept
KExhaustPipe is interpreted as the set of all individuals for which it is known that they
belong to the concept ExhaustPipe meaning that only individuals whose membership
to concept ExhaustPipe is explicitly stated in the ABox are interpreted such that they
belong to KExhaustPipe. The K-operator can be used to state dependencies like the
fact that the manifold depends on the petrol engine as

Manifold v ∃KisConnectedTo.KPetrolEngine

intuitively meaning that for every manifold a petrol engine has to be explicitly stated
which is known to be connected to the manifold. However it is not possible to state that
this dependency is only valid in a certain context. Furthermore, the rigidity metaprop-
erty cannot be stated using the K operator. Up till now only few DL-reasoners support
the K-operator and those reasoners only support the K-operator within queries whereas
the KB itself is not allowed to use the operator.

In [3] truth maintenance systems are used to track deductive dependencies between
statements in an RDF store. In contrast to this, the dependencies used in this paper
can change depending on the context and do not necessarily constitute deductive de-
pendencies. In relational databases, certain dependencies can be enforced by adding
integrity constraints which are checked during udpates. [20] introduces static integrity
constraints to OWL making it possible, for example, to add a constraint stating that
“every person must have a social security number” to an OWL KB.

6 Conclusion and Future Work

In this paper, we presented three different deletion operators: The rigidity-guided dele-
tion performs additional deletions by forgetting an individual from the KB’s signature.
The dependency-guided deletion relies on dependencies present in the KB and shows
a cascading behavior by removing assertions violating these dependencies. The third
operator, called cascading deletion exploits both rigidity and dependence metaproper-
ties. The interaction of these two metaproperties leads to interesting deletion cascades,
which provide intelligent assistants to users, e.g. product developers. In a case study in
the area of product development we have shown that the cascading deletions performed
by our approach are desired by the product developers. The case study revealed that the
product developers would like further deletions, the implementation of which we will
tackle in the future. To achieve this, we plan to analyze other types of dependencies in
KBs and then exploit them for deletion.

Up till now we only considered deletions. However in practice deletions go hand
in hand with insertions. Inserting assertions can easily lead to violated dependencies.
We want to use these violated dependencies to make suggestions to the user for further
insertions. This cannot be accomplished with a local closed world assumption, since it
does not allow to consider transitions between different states of a KB. In contrast to
that, dependencies could be checked for each insertion and additional insertions pre-
venting the violation of dependencies could be automatically generated and suggested
to the user.

References

1. A. Ahmeti, D. Calvanese, A. Polleres, and V. Savenkov. Handling inconsistencies due to
class disjointness in SPARQL updates. In ESWC, volume 9678 of LNCS. Springer, 2016.

2. C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial
meet contraction and revision functions. J. Symb. Log., 50(2):510–530, 1985.

3. J. Broekstra and A. Kampman. Inferencing and truth maintenance in RDF schema. In PSSS,
volume 89 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

4. D. Calvanese, E. Kharlamov, W. Nutt, and D. Zheleznyakov. Updating aboxes in dl-lite. In
AMW, volume 619 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

5. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On instance-level update and erasure
in description logic ontologies. J. Log. Comput., 19(5):745–770, 2009.

6. F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic operator for
description logics. Artif. Intell., 100(1-2):225–274, 1998.

7. U. Furbach and C. Schon. Semantically guided evolution of aboxes. In TABLEAUX, volume
8123 of Lecture Notes in Computer Science, pages 134–148. Springer, 2013.

8. D. Gasevic, D. Djuric, and V. Devedzic. Model Driven Engineering and Ontology Develop-
ment (2. ed.). Springer, 2009.

9. B. C. Grau, E. Kharlamov, and D. Zheleznyakov. Ontology contraction: Beyond the propo-
sitional paradise. In AMW, volume 866 of CEUR Workshop Proceedings, pages 62–74.
CEUR-WS.org, 2012.

10. N. Guarino and C. A. Welty. An overview of ontoclean. In Handbook on Ontologies, Inter-
national Handbooks on Information Systems, pages 201–220. Springer, 2009.

11. M. Horridge. Justification based explanation in ontologies. PhD thesis, University of Manch-
ester, UK, 2011.

12. E. Kharlamov, D. Zheleznyakov, and D. Calvanese. Capturing model-based ontology evolu-
tion at the instance level: The case of dl-lite. J. Comput. Syst. Sci., 79(6):835–872, 2013.

13. P. Kügler, P. Kestel, C. Schon, M. Marian, B. Schleich, S. Staab, and S. Wartzack. Ontology-
based approach for the use of intentional forgetting in product development. In D. Mar-
janovic, M. Storga, N. Pavkovic, N. Bojcetic, and S. Skec, editors, DESIGN 2018, 2018.

14. J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data.
Biometrics, 33(1), 1977.

15. M. Lenzerini and D. F. Savo. On the evolution of the instance level of dl-lite knowledge
bases. In Description Logics, volume 745 of CEUR Workshop Proceedings. CEUR-WS.org,
2011.

16. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Foundations of instance level updates in expres-
sive description logics. Artificial Intelligence, 175(18):2170–2197, 2011.

17. C. Lutz and F. Wolter. Foundations for uniform interpolation and forgetting in expressive
description logics. In IJCAI, pages 989–995. IJCAI/AAAI, 2011.

18. D. McGuinness, E. Kendall, J. Bao, and P. Patel-Schneider. OWL 2 web ontology
language quick reference guide (second edition). Technical report, W3C, Dec. 2012.
http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/.

19. K. Moodley. Debugging and repair of description logic ontologies. Master’s thesis, Univer-
sity of KwaZulo-Natal, Durban, South Africa, 2010.

20. B. Motik, I. Horrocks, and U. Sattler. Adding integrity constraints to OWL. In OWLED,
volume 258 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

21. P. Simons. Parts: A Study in Ontology. Clarendon Press, 1987.
22. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL

reasoner. J. Web Sem., 5(2):51–53, 2007.

	Metaproperty-guided Deletion from the Instance-Level of a Knowledge Base

