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Abstract 

The simulation of product behavior is a vital part in virtual product development, but currently there is 

no tool or method available that can examine the quality of FE simulations and decide automatically on 

whether a simulation is plausible or non-plausible. In the paper a method is presented that enables 

automatic plausibility checks on basis of empirical simulation datasets. Nodal simulation data is 

transformed to numerical arrays, of fixed size, using virtual spherical detector surfaces. Afterwards the 

arrays are used to train a Deep Convolutional Neural Network (AlexNet). The Neural Network can then 

be used for plausibility checks of FE simulations (structural mechanics). In a first application a Deep 

Convolutional Neural Network is trained with simulation data of a demonstrator part, the rail of speed 

inline skates. After the GPU training of the Neural Network, further simulations are evaluated with the 

net. These simulations were not part of the training data and are used to calculate the prediction quality 

of the Neural Network. This approach is to support development engineers during design accompanying 

FEA in virtual product development. 
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1 INTRODUCTION 

The simulation of product behavior is a vital part in virtual product development. Especially because 

simulation, at an early stage of product development, can create certain business benefits: reduced 

product development time; increased innovation; reduced product cost; reduced development cost and 

improved product quality (Adams, 2008). The set-up of valid simulations requires expert knowledge, 

acquired skills and sufficient expertise (Fröhlich, 2005). Design engineers, who perform Finite Element 

Analysis (FEA) infrequently, must be assisted and their FEA results need to be checked for plausibility. 

According to a recent survey (Boucher, 2013), companies struggle to expand simulation knowledge to 

a growing pool of users. 

An automatic plausibility check for FE simulations can identify non-plausible simulations, and warn the 

user to utilize the results cautiously or ask for expert help (Spruegel, 2015). Before a classifier can 

evaluate a simulation, all the relevant information from the simulation set-up and the results must be 

available in computer-interpretable form. Classifiers such as Artificial Neural Networks attempt to 

create a good representation and build a mathematical metamodel to learn these representations from 

large data sets. Deep Artificial Neural Networks have won many contests in recent years (Schmidhuber, 

2015) and can therefore be used for classification of simulation results in the two categories, plausible 

or implausible simulation. 

The aim of this paper is to provide an overview of current tools for plausibility checks, current Deep 

Learning techniques and to propose a generic approach to plausibility checks for structural mechanics 

with deep learning, and a first application of the method at the end of this paper. This approach is to 

support development engineers during design accompanying FEA in virtual product development. 

The structure of the paper is as follows. In Section 2, current approaches of plausibility checks for 

simulation are mentioned. Followed by Section 3 with Artificial Neural Networks and Deep Learning 

Classification. In Section 4 the methodology of the generic approach with spherical detector surfaces is 

presented. A first application of the methodology can be found in Section 5. The paper closes with 

summary and outlook in Section 6.  

2 PLAUSIBILITY CHECKS 

Plausible FE simulations are apparently, likely valid. This means that plausible FE results can still be 

wrong, but give a good hint on whether to accept or reject a considered simulation result (Spruegel et 

al. 2016). In Figure 1 the bending of a steel cantilever beam under constant load can be seen.  

 

Figure 1. Qualitative example of a steel cantilever beam with plausible and non-plausible 
results due to coarse FE mesh size  
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Based on structural FE simulations the functional relationship between element mesh size and 

directional deformation are approximated by polynomial regression. Notional testing results are plotted 

exemplarily and define the categories valid, likely valid and non-valid simulation results. Additionally 

the terms plausible and non-plausible are augmented, which means that a non-plausible simulation is 

also non-valid. In this case results must be rechecked carefully or simulation experts must support the 

design engineer with the given simulation task. 

Plausibility checks are a common tool to evaluate data or methods. The different fields of application 

are very diverse, as the following exemplary compilation shows: 

Plausibility checks can be used to analyze electrical breakdown mechanisms in syntactic foams (Tröger, 

2009) or for the measurement of uncertainties in soil analysis (Nestler, 2007). Tischler, 2013 describes 

common decisions and cooperative actions of multiple vehicles and the need for plausibility checks for 

vehicle sensor data. Braun et al., 2011 analyze the best combination of frequencies for the calculation 

of mean hearing loss in pure tone threshold audiometry for correlation with hearing loss for numbers in 

speech audiometry for plausibility checking in expertise.  

First approaches for plausibility checks for simulation can be distinguished. Consequently, Qian, 2013 

uses plausibility checks in dynamic simulations for a cylindrical roller bearing model in wind turbines, 

based on the known behaviors of bearings. Integrated behavior models for critical signs and their 

consistency are analyzed with plausibility checking by Ermel et al., 2011. Müller-Sommer and 

Straßburger, 2010 develop methods for automated pre-plausibility checks of input data for Intra-

Logistic-Simulations in digital factories, entered by users. This enables the detection of obviously 

erroneous data. Automated plausibility checks for similar recurring mechanical parts are developed as 

part of an FEA assistance system (FEdelM) by Spruegel et al., 2015 and Spruegel and Wartzack, 2016.  

Currently there is no tool or method available that can examine FE simulations and decide automatically 

on whether the simulation is plausible or non-plausible. 

3 DEEP LEARNING 

Artificial Neural Networks (ANN) are a combination of units (artificial neurons), which are connected 

according to a defined scheme – therefore, they can communicate among each other. The structure of 

one individual unit is relatively simple, but they can solve efficiently complex tasks as a connected 

network (Callan, 1999). Initialized by McCulloch and Pitts, 1943, neural networks in their basic form try 

to model the brain of living beings with individual neurons (nerve cells). 

Figure 2 shows the structure of an organic neuron. From the perikaryon (cell body), which contains the 

soma (cell nucleus), numerous dendrites and the axon go off. Dendrites form the connection to 

neighboring nerve cells, absorb stimuli, and relay these impulses to the nervous system (perikaryon and 

soma) (Luxem et al., 2010).  

 

Figure 2. based on (Luxem et al., 2010)  

The cell itself transmits pulses via the axon, the main exciter of the nerve cell. The axon divides itself 

into smaller branches and ends in the synapses. The connections between dendrites and synapses are the 

important contact points, via which nerve cells communicate with each other. With the splitted axon, 

one nerve cell can be connected with up to 100,000 other cells (Beck et al., 2016). Due to the large 

number of nerve cells and synapses that are linked to each other, a nerve cell usually receives its 

incoming signals from several upstream neurons (Adamy, 2011). 
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ANNs are complex mathematical models, which try to model nature's neural systems, and are a common 

machine learning technique (Bengio, 2009 & Widrow and Lehr, 1990). An ANN consists of artificial 

neurons and connections/weights between them. The artificial neurons are arranged within layers 

(Runkler, 2010 & Qin und Tang, 2014), and an ANN consists of at least one input and one output layer. 

Further, so-called hidden layers can be arranged between the input and the output layer (LeCun et al., 

2015 & Schmidhuber, 2015 & Hinton, 2007). 

Input values are passed to an ANN on the input layer (Figure 3, left side). The inner structure of a neuron 

on the hidden layer is detailed for neuron G. The inputs OA to OD are multiplied with the corresponding 

weight and a bias value is added to the sum. The resulting value nG is the input for the transfer function 

f. The functional value of the transfer function is the output of the neuron and is transferred to all the 

neurons of the next layer.  

 

Figure 3. ANN with four inputs, one hidden layer and two outputs  

Deep learning refers to methods and techniques of machine learning, which have been developed 

extensively since 2006 (Bengio, 2009 & LeCun et al., 2015 & Deng, 2014). The term “deep learning” 

is not commonly defined, but nevertheless an ANN with many hidden layers and a large number of 

neurons is considered “deep”. First concepts comparable to deep learning can already be found in the 

1950s. Selfridge, 1958 introduced a mathematical model named Pandemonium, the basic structure and 

its topology can be compared roughly with today’s deep learning neural networks.  

Deep learning can be applied on a variety of different tasks and performs very well. A deep 

convolutional network (known as AlexNet) was trained for the classification of 1.2 million high-

resolution images in the ImageNet LSVRC-2010 contest into 1,000 different classes and achieved 

remarkable low error rates (Krizhevsky et al., 2012). 

The improved convolutional neural network architecture GoogLeNet performed very well in the 

ImageNet ILSVRC-2014 contest for image classification (Russakovsky et al., 2015). 

In summary, multi-layer ANNs, especially Deep Convolutional Networks, with a high number of 

neurons can be used for very diverse tasks and achieve very good results and high prediction quality. 

Available hardware, training time and available large annotated or large empirical datasets impose 

limitations for larger Neural Networks and on the implementation for further applications. 

Nevertheless, Deep Neural Networks have great potential to perform very well in complicated 

classification tasks. Such a task is the classification of plausible and implausible FE simulation results. 

In the following a methodology is presented, that can transform FE simulations to a constant sized input 

matrix for a deep learning neural network. In an example application the presented methodology is 

applied and the results are presented in section 5. 
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4 A GENERIC APPROACH TO PLAUSIBILITY CHECKS FOR STRUCTURAL 

MECHANICS USING DEEP LEARNING 

When FE simulations should be evaluated with deep neural networks, several challenges need to be 

overcome: 

• Each numerical FE simulation is different, i.e. different parts with individual geometries, different 

number of mesh nodes, different boundary conditions such as supports and applied forces. 

• All information must be available in computer-interpretable form. 

• A large empirical dataset with input and target variables must be available for the training of deep 

learning networks (including training and validation data). 

• The prediction quality of the trained network must be evaluated after the training with previously 

unknown data (testing data). 

• Suitable network architecture and network parameters, for the given task, must be selected or 

created from scratch. 

In Section 4.1 the conversion of individual FE meshes to a numerical array of fixed size using spherical 

detector surfaces is presented. Section 4.2 describes the conversion of nodal FE information to arrays of 

the same size. Finally a suitable Deep Learning architecture and framework is selected in Section 4.3. 

4.1 Spherical Detector Surfaces 

The methodology for transforming individual parts (meshed within FE software) to a constant array of 

numerical values uses spherical detector surfaces. Figure 4a) shows a roughly meshed block with 10-

node tetrahedral elements, which are typically used to mesh solid parts of any shape. Afterwards a 

spherical surface with 36 by 36 pixels is spanned around the part; the part’s center of gravity is the origin 

of the sphere and each pixel has the same surface area. After the conversion from Cartesian to spherical 

coordinates each node is projected to the detector surface (Figure4c) to f)). The mapping from the FE 

node to a certain pixel of the detector surface depends only on the azimuth and polar angle of the 

spherical coordinates, the radial distance has no influence on the mapping. After the mapping, the 

characteristic number of projected nodes per pixel can be counted and transformed into a numerical 

array of fixed size, in Figure 4 the result is a 36x36 array, as the sphere had 36x36 pixels . For higher 

resolutions and larger arrays, the angular increment of the detector pixel can be reduced optionally. 

Further information on the methodology of detector surfaces are described in Spruegel and Wartzack, 

2015. 

 

Figure 4. Conversion from FE nodes of a block to characteristic detector sphere with 
individual number of nodes per pixel surface 
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4.2 Conversion of FE simulations to identical arrays 

As stated earlier, it is highly essential to transfer further information from an underlying FE simulation 

to the plausibility check, only the nodes are not sufficient. Therefore, a slight modification of the 

spherical detector surface methodology is implemented. Besides the detector array from Figure 4f), the 

assignment of each node to one distinct pixel is captured. This enables the transformation of any nodal 

value to a numerical array of fixed size. Consequently, result values and the boundary conditions of 

simulations can be transformed to arrays of pre-defined size. The result is an array for each of the 

following nodal inputs: nodes; fixed support; remote displacement; force component x-direction; force 

component y-direction; force component z-direction; deformation x-direction; deformation y-direction; 

deformation z-direction; equivalent stress; normal stress x-direction; normal stress y-direction; normal 

stress z-direction. 

4.3 Deep Learning 

For the plausibility check of FE simulations a classification tool is necessary that can deal with the 

following requirements: 

• Highly nonlinear classification problem. 

• Classification with two classes: plausible and non-plausible input data. 

• Processing of a large number of inputs (several input arrays of size 100x100 values). 

• Processing capabilities for large empirical datasets (several thousand FE simulations). 

As the number of inputs of such an ANN is very high and the relationship between input and output is 

nonlinear, a large number of hidden units is required to do the classification task with ANNs. Therefore, 

the training of deep convolutional networks on GPUs (graphics processing units) is the method of 

choice. Convolutional Neural Networks (CNNs) are hierarchically structured, multi-layered artificial 

neural networks (Fasel, 2002). CNNs recognize basic features in the first layers and combine them in 

later layers (LeCun and Bengio, 1998). For the recognition of basic features receptive fields are used, 

which means that a set of neurons passes their output values on to a single downstream neuron which 

are combined again later on, such as in the retina of vertebrate animals (Bryngdahl, 1964). Typically, 

CNNs process complete images. 

Deep learning frameworks, such as CAFFE (Jia et al., 2013); CNTK (Agarwal et al., 2014) or 

TensorFlow (Abadi et al., 2015), provide the capability to handle large datasets and to use GPUs for the 

training of the CNNs. Besides the framework, the architecture of the CNN must be defined, or available 

architectures such as the AlexNet (Krizhevsky et al., 2012) can be applied. 

5 FIRST APPLICATION AND RESULTS 

As a first application, the rail of speed inline skates, differing in geometry and applied forces, is used to 

show the capabilities of the described methodology for automatic plausibility checks for structural 

mechanics with deep learning. The CAD geometry is shown in the upper section of Figure 5. Different 

wheel diameters (76 mm, 80 mm and 90 mm) as well as different wall thicknesses (2 mm, 3 mm, 4 mm 

and 5 mm) create 12 different geometries (the extreme geometries are shown on the left and right in 

Figure 5). Simulation input parameters, such as the mesh size (1 mm, 1.5 mm, 2 mm, 3 mm, 4 mm, 

5 mm, 10 mm, 15 mm) and the applied forces differ. The first force simulates the weight of a person on 

to the rail and the second force simulates the hit of an object with the first wheel. Consequently, 607 

different combinations of input parameters (simulation design points) are simulated for each of the 

geometries. This results in a large database of 7.284 structural mechanic FE simulations. The dataset is 

split into sub-datasets used for training, validation and testing of the CNN. For each simulation the 

following results are available: deformation in x-, y- and z-direction, equivalent stress and normal stress 

in x-, y- and z-direction. In combination with the nodes and the boundary conditions this forms the 

whole dataset considered in the application. 

For each simulation the above described methodology with spherical detector surfaces is applied to 

generate the desired uniform numerical arrays. The nodes from the FE simulation can have random 

orientation (rotation and translation), therefore, a Principal Component Analysis (PCA) is used.  
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Figure 5. Automatic transformation of FE simulation to a matrix array of constant size  

The randomly oriented nodes are transformed to a representation in the principal component space. As 

the result form the PCA is not explicit (the geometry can rotate around each of the global axes by 0°, 

90°, 180° or 270°). This results in four different rotations for each of the x-, y- and z-axis of the global 

coordinate system. In sum these are 64 ( = 43 ) possible orientations. To eliminate the inconsistent 

rotations, the other 64 orientations are created intentionally (see Figure 5, sphere in the middle). 

Afterwards the nodes are projected onto the surface and the number of nodes in each pixel is counted. 

This forms the uniform numerical arrays as described in the methodology (in Figure 5 the two 100x100 

arrays for the nodes and the equivalent stress are shown in detail with their corresponding scale). The 

whole input for the plausibility check consists of 13 arrays and contains all the relevant information of 

one FE simulation for the plausibility check. These arrays are different for each considered geometry 

and the corresponding simulation input parameters. As a result they can be used to evaluate the 

plausibility of a simulation.  
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The available dataset of 7.200 simulations is split on a 80:20 basis: 5.700 data samples for training, 

1.500 data samples for validation and additional 84 data samples for testing the prediction quality of the 

trained CNNs. A single Tesla GPU is used for training and the deep learning framework is CAFFE (Jia 

et al., 2013). The CNN architecture is the AlexNet and the arrays are converted to images, each 

numerical value is one pixel of the image. The 13 arrays are combined to one image per simulation with 

100x1300 pixels. With an AlexNet crop size of 100 and batch size 500 the supervised learning on a 

Tesla 2075 GPU takes 21 days. The prediction quality is calculated from the entries of the confusion 

matrix for the unknown 84 data samples. According to Powers, (2011) the following performance 

characteristics can be calculated for the best CNN out of 450.000 AlexNet iterations: 

Table 1: Performance characteristics calculated for the best CNN out of 450.000 AlexNet 
iterations 

performance characteristic value  

positive predictive value (precision) 86,11 % 

negative predictive value 89,58 % 

true positive rate (sensitivity) 86,11 % 

true negative rate (specificity) 89,58 % 

accuracy 88,10 % 

  

The results from Table 1 demonstrate that a trained AlexNet CNN in standard configuration can perform 

an automatic plausibility check for structural FE simulations. Further improvements in the prediction 

quality can be achieved by optimizing the CNN net parameters, during the training of this example the 

net parameters (i.e. multiplier on the global learning rate, multiplier on the global weight decay, etc.) 

are on default. These improvements are not included in the results in Table 1 and therefore, an 

improvement of the prediction quality is very likely. 

6 SUMMARY AND OUTLOOK 

In conclusion, a generic approach to plausibility checks for structural mechanics with deep learning was 

presented in this paper. The main challenges, such as the conversion of FE simulations to numerical 

arrays can be overcome with the method of spherical detector surfaces for nodal FE information. The 

arrays can be used as input deep neural networks. The training of CNNs on GPU enables the usage of 

networks with many layers and a large number of hidden neurons. In a first application the feasibility of 

the approach could be proved with high prediction quality, already for the standard AlexNet parameters. 

The further steps are the generation of a larger data base with many different parts and simulation 

parameters and the training of a CNN with modified structure to prove the generality of the approach. 

Especially the conversion from numerical arrays to pictures, with potential loss of information due to 

compression, should be eliminated with an own ANN architecture that is able to perform the 

classification directly on basis of the described numerical arrays. 
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