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the product developer. The following four aspects regarding the cell temperature are particularly 
important: 

 The minimum and maximum temperature of the cell 
 The gradient of the temperature in one cell 
 The gradient of the temperature between the cells  
 The optimal operating temperature 

Currently, the quantitative fulfillment of these requirements regarding these temperatures is depending 
on the manufacturer and varies from cell to cell. Finding the optimal solution for an appropriate 
thermal management system by taking into consideration the requirements for every combination of 
drive concept and li-ion cells is very challenging for product developers because there are different 
factors that influence the temperature of the cell. 

1.2 Objectives and overview of the approach 
To meet the requirements relating the temperature, the thermal management consists of various 
components, which perform different functions. Each of these functions has a weight and a cost share 
of the total thermal management system. To reduce weight and cost of the thermal management in 
particular, the expensive and heavy functions have to be identified with the help of the value 
engineering methodology. Thereafter, the identified functions have to be optimized in terms of cost 
and weight. Prior to the optimization of a function, it is essential to understand which modification of 
individual characteristics has an effect on properties of the complete system. For this purpose, the 
matrix-based product description is used in a simplified industrial case study. This makes it possible 
for the developer to understand and to recognize the numerous, complex dependencies and 
relationships between all requirements, functions, properties and characteristics. For instance, the 
developer has the possibilty to change the determing characteristics of the thermal management 
system in order to reduce the cost and weight without decreasing the performance. By using the 
matrix-based product description, a basis for a transparent and objective communication among 
engineers and managers is provided for improving decision making in early design phases. 

2. State of the art and related work 

2.1 Value engineering 
In [DIN 1325-1], the value engineering is actually defined as an organized and creative approach, 
which has a function and economic orientated design process with the aim of bringing the appreciation 
of a value engineering object to the application. The aim of the value engineering procedure is to re-
cognize all non necessary costs for the value and/or the function of a product and eliminate them. In 
2000, the [VDI 2800] divided the value engineering procedure into six steps. Due to the European 
standardization, this [VDI 2800] was expanded to ten steps in 2010 [VDI 2011]. However, the 
approach of the year 2000 is the most widespread, and therefore this one is explained thereafter: 

1. Prepare project: First define the task, define target, build team, plan the process 
2. Object analysis (actual state): obtain information, describe functions, identify function costs 
3. Define target state: check the function performance and the costs 
4. Develop solution ideas: search for ideas 
5. Define solutions: check the feasibility and the economics 
6. Implement solutions: choose, recommend and realize one solution 

One focus is the decomposition of the main function into subfunctions with decreasing complexity in 
comparision to the main function and their assignment to the assemblies and single parts. The costs of 
the different functions can be estimated from the calculated costs of the single parts. These functional 
costs, which should be minimized, are the basis for the evaluation of design concepts and alternatives. 
After connecting the requirements with functional costs, solution ideas can be developed and 
afterwards checked and realized. To sum up, the six steps emanate from a design, which is analysed in 
terms of functions to be fulfilled and costs, which are reduced with this approach [Pahl et al. 2007]. 
A new approach for conceptual lightweight design in early design phases based on target costing and 
value engineering was presented in [Albers et al. 2013]. To identify the most recommended weight 
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reduction, a functional analysis is necessary. Instead of cost, the mass was mapped to each function in 
this approach. In this way, it is possible to analyze the functions to be achieved together with their 
corresponding masses. This allows to search for new solutions of each function to realize weight 
savings in order to optimize the product regarding lightweight design [Albers et al. 2013]. 

2.2 Matrix-based product description 
The interactions and dependencies between requirements, behaviours, properties, functions, active 
principles and characteristics within the thermal management system mentioned in chapter 1 can be 
mapped systematically by using a matrix-based product description. This matrix-based product des-
cription is shown in Figure 1 and consists of several Design Strucure Matrices (DSM) which are on 
the diagonal of the matrix (e.g. requirement matrix) and Domain Mapping Matrices (DMM) which are 
above/below the diagonal and therefore represent a Multi Domain Matrix (MDM) [Krehmer 2012]. 
A DSM is a square matrix which shows the dependencies between elements of a product or system in 
a visual and analytically advantageous description [Browning 2001] and has been used to model many 
different types of systems [Eppinger et al. 2012]. A DMM is a rectangular (m x n) matrix relating to 
two DSMs. Thereby, m is the size of one DSM and n is the size of the other DSM. By using the MDM 
(Figure 1) several analysis can be conducted and these have, inter alia, the following benefits: 
capturing the dynamics of product development, showing traceability of constraints across domains, 
providing transparency between domains, synchronizing decisions across domains, cross-verifying of 
domain models and analysing the complex dependencies and relationsships between elements 
[Danilovic et al. 2007]. As a result, the matrix-based product description can be filled with information 
step by step – starting from the customer requirements (RE) – regarding the respective behaviour (B), 
properties (P), characteristics (C), as well as the function structure (FC) and active structure (AS) of 
the overall system level (OSL), the subsystem level (SSL) and the component level (CL) [Luft et al. 
2013b]. 

 
Figure 1. Simplified and schematic overview of the matrix-based product description  

according to [Krehmer 2012] and [Luft et al. 2013b] 

The understanding of the terms “characteristic” and “property” in this work is particularly based on 
the definitions in [Weber 2005]. The properties of a product cannot be directly determined but are the 
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result of various characteristics, which are directly determined by developers. Consequently, the 
characteristics are the direct “setscrews” of product developers for determining the product’s property 
profile. Thereby, properties can be either quantitatively (e.g. cost, stiffness, weight) or qualitatively 
measurable (e.g. aesthetics, manufacturability, environmental friendliness). Following this 
understanding, it can be differentiated between intensive and extensive properties [Roozenburg 2002]. 
For instance, material characteristics belong to the intensive properties, which are the result of the 
selection of physic-chemical characteristics (e.g. choice of material). The extensive (or actually 
realized) properties of a component (e.g. stiffness, weight) arise from the combination of the intensive 
properties and the geometrical characteristics (e.g. length, width, height). The (structural) 
dependencies between the (extensive) properties of the components are defined by the determination 
of structural characteristics (e.g. distance, angle). This leads to the properties of individual product 
modules, its required functions, which are achieved by appropriate active principles and in a further 
step to the properties of the entire product. The behaviour of the product, which is relevant for meeting 
the customers’ requirements, is obtained as a result of the realized product properties by taking into 
account the actual usage and environmental conditions [Krehmer 2012]. 
A great advantage of the matrix-based product description is the mapping of multiple dependencies, 
for example of defined characteristics and resulting properties. By mapping, for instance, the 
dependencies between characteristics and properties in a characteristic-property-matrix (see Figure 1), 
it can be analysed, which unintended effects on properties have intended modifications of certain 
characteristics. Hence, deviations from required properties together with their related causes or effects 
can be recognized very early in the development process. As a result, better alternatives can be 
identified as well as their corresponding consequences can be estimated accurately. In addition, it is 
also possible to reconstruct the impact of changes of certain characteristics on the component, 
subsystem and overall system level. The matrix-based product description was already evaluated by 
using the example of a chassis and further developed (e.g. different types of dependencies) in [Luft et 
al. 2013b]. 

3. Methodology to reduce cost and weight of thermal management 
In the following chapter a new methodological approach is described in order to reduce the cost and 
weight of the thermal management system of traction batteries. As shown in Figure 2, this approach 
includes four steps. The first step, the definition of requirements, is not in the focus of this paper and 
therefore these requirements are assumed to be known (see chapter 1.1). The next three steps are 
explained in detail in this chapter. The thermal management system consists of a huge number of 
functions and components, which make it even impossible to present it in its complexity in this paper. 
In order to demonstrate these steps clearly, only a selection of these funtions and components of the 
whole thermal management will be discussed in the following. This approach has been successfully 
used and validated for a thermal management system for traction batteries at an automotive supplier. 

 
Figure 2. Procedure to reduce cost and weight of the thermal management system 

• Taking into account the concept of the car (only electric or with gasoline)
• Analysing the types of Li-ion cells (prismatic, pouch or cylindrical)
• Considering climatic conditions

Step 1: Define the 
requirements

• Analysing the convective heat transfer
• Calculating the energy balance at the convective transport
• Identifying characteristics for influencing the heat transfer

Step 2: Elaborate 
thermodynamic connections

• Establishing function tree of the thermal management system             
• Performing value engineering regarding costs and weight
• Identifying functions and components for optimization

Step 3: Analyse existing 
concepts regarding costs 

and weight
• Creating a matrix-based product description
• Analysing of interactions between requirements, properties, characteristics
• Supporting developer by identifying the right setscrews           

Step 4: Map dependencies 
of  requirements, properties 

and  characteristics
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3.1 Elaborate thermodynamic connections 
To improve the thermal management system, it is necessary to understand the thermodynamic 
connections of the system, which is the aim of step 2 in this approach. To regulate the temperature of 
the cell, it is essential to bring heat into or out of the cell. A important thermodynamic factor for this is 
the heat transfer and this one will be explained in this chapter exemplary. 
Heat transfer is the transfer of energy through a system boundary because of gradients in temperature. 
The result is a change of entropy in the system. Regarding the total energy, heat is always transfered 
from the hot to the cold in three different types [Polifke and Kopitz 2009]: 

1. Heat conduction: diffusive energy transport in solids or fluids 
2. Convection: carriage of heat in flowing liquids or gases 
3. Thermal radiation: exchange of heat between bodies at different temperatures by 

electromagnetic radiation in the wavelength range from 0.1 to 1000 µm (visible light and 
infrared) 

3.1.1 Convective heat transfer 
Analyses of heat transfer have shown that convection has a significant influence on the tempering 
performance of a system and therefore it is considered in the following. Convection means the transfer 
between a component and a fluid moving relatively to each other. A distinction has to be made 
between free convection and forced convection. Free convection is caused by body force (e.g. 
buoyancy force) as a result of distinction in temperature respectively density of the medium. Different 
to this, at forced convection the flow of the medium is caused from an external power (e.g. pump, air 
blower). Newton described these thermodynamic relations in equation 1 [Polifke and Kopitz 2009]. 

(T T )CE TMQ A     (1) 

The rate of heat flow Q
.
 (in W) depends on the heat transfer coefficient α (in W/(m2∙K)), the surface A 

(in m²), the cell temperature TCE (in K) and the temperature of the tempering medium TTM (in K). All 
parameters can be measured exactly (except heat transfer coefficient α). The heat transfer coefficient 
depends on the form of the flowed component, the hydrodynamic and the thermal conditions [Polifke 
and Kopitz 2009]. The medium and the flow speed as factors of the heat transfer coefficients are 
shown in table 1. In this table, it is distinguished between free and forced convection and between air 
and water. Water has a higher heat transfer coefficient than air and as a consequence a higher heat 
flow. Thereby, the heat transfer coefficient is higher at forced convection (flowing) compared to free 
convetion (static) and with increasing flow speed the heat transfer coefficient is increasing. As a 
consequence, the heat flow can be influenced by the selection of a different medium and flow speed. 

Table 1. Heat transfer coefficient between a metal wall and air/water [Böge 2013] 

 

3.1.2 Energy balance at the convective transport 
The convective transport describes the transfer of enthalpy in a flowing fluid. Taking into account the 
mass and energy balance, the whole system is considered in this chapter. The heat flow of the system 
is described in equation 2 [Polifke and Kopitz 2009]. 

_ _(T T )TM EX TM ENQ m c      (2) 

Static air

Flowing air

10 m/s
20 m/s
40 m/s
50 m/s

Static water
Flowing water  ≤ 1 m/s

Heat transfer coefficient (W/(m²xK))
5 - 10

45 - 70
95 - 120

150 - 190
190 - 220

600
1700 - 3700
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components of the tempering plate, a thermal conductive foil and a pump. For the the first two 
functions listed above and the corresponding components described, the value engineering (see 
chapter 2.1) is applied exemplarily with the aim to identify functions and components for cost and 
weight reduction. 
Therefore, in Figure 5, the actual costs and weights of each component get assigned. It has to be noted, 
that the costs get estimated in this case study, because they depend on various factors such as for 
example the specific number of pieces. The weight of each component is determined by using a CAD 
program. To establish a connection between the components and the funtions, each component gets a 
correlation (s = strength) with each function, whereby “0” means no correlation and “3” represents a 
strong correlation. After normalizing (n) the strengths, every component (c) gets a functional cost (fc) 
and a function weight (fw) assigned. With that, it is possible to show which proportion of the cost and 
the weight of each component can be assigned to each function. Due the summation of each fc 
respectively fs of each component, the actual functional costs and weights are determined. 

 
Figure 5. Object analyse (actual state) 

In Figure 6, the targets for costs and weights get defined and each function gets its share assigned. For 
defining the target of costs and weights, it is possible to use target costing and target weighting. 
Objective in this case study is to reduce the mass and the cost by 20 percent. For that, first the 
requirements get weighted. A selection of requirements is listed in Figure 6 whereby the weighting is 
depending on the concept of the car. After specifying and normalizing (n) the strength (s), the 
relevance of each function (rf) matching the requirements can be calculated. Multiplying these 
calculated relevance of every function with the target costing and weighting results in the target costs 
and weight of any function. Subsequently, it is possible to compare these targets with the actual state 
of Figure 5 to identify the functions for reducing costs and the weight. 

 
Figure 6. Define target state 

One result of this analysis is that function “dissipate heat” must be reduced from 348.3 € to 146.7 € 
(58 percent) and from 660.2 g to 314.8 g (52 percent). To achieve these aims without reducing the 
performance of the thermal management at the same time it is essential for the developer to modify the 
right “setscrews”. In the following this is exemplary shown at the sealing plate, which has a high part 
at the function “dissipate heat”, concerning the costs and the weight. 

3.3 Mapping dependencies of requirements, properties and characteristics 
Using this matrix-based product description in an industrial case study, all the dependencies and 
interactions within the product can be mapped systematicaly in the development process. For instance, 
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coefficient positive. Using the matrix-based product description, the product developer can understand 
what affects characteristic modifications have. These setscrews can have effects which can be intended 
and unintended as well as evaluated positive and negative. With the help of the equations given in 
chapter 3.1, the dependencies can also be quantified or determined more accurately. This gives the 
product developers a very good understanding of the thermal management system during the early 
conceptual design phase. 

 
Figure 8. An extraction of the matrix-based product description 

4. Summary and future work 
A methodology for reducing weight and cost of a thermal management system for traction batteries 
was presented in this paper. Due to the complexity of developing this thermal management system, the 
rate of heat was intensively discussed and the analytic equations were presented. Based on a sealing 
plate of one cell module, a value engineering procedure was performed in order to identify functions 
and components for reducing weight and cost. To increase the understanding of the thermal 
management system and to get a starting point for the optimization of the identified component, a 
matrix-based product description was developed. Using characteristics and properties, the flowing 
properties and the thermodynamic correlations were elaborated. This allowed to show the 
dependencies between the characteristics, the properties and the requirements, which were defined 
regarding the weight, the cost, the safety and the temperature of the cells. This procedure supports 
product developers in their optimization task of components and functions regarding weights and 
costs. 
Future research work will not only deal with the further application of this methodological procedure, 
but also use and validate computer-aided tools especially for the matrix-based product description (e.g. 
Loomeo) since its creation is very time-consumig. For a better support of developers, the significant 
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characteristics and properties have to be identified more easily. Therefore, a test stand will be built up, 
the different characteristics will be varied and subsequently the effects are to be interpreted. In future 
work, the matrix-based product descrioption will be linked to the steps of development process, the 
development organization and the so-called knowledge and information objects [Luft et al. 2013a]. 
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